2. (30 points) The graphs of $f(t), h(t)$, and $k(t)$ are shown below. You may assume that as $t \rightarrow \infty$, the graphs of f, h, and k continue in a fashion similar to the trend observed in the graph on the right. We define $g(x)=\int_{1}^{x^{2}} f(t) d t$.
a. What's $g^{\prime}(2)$?

By FTC, $g^{\prime}(x)=2 x f\left(x^{2}\right)$. Thus
$g^{\prime}(2)=4 f(4) \approx 4\left(\frac{1}{3}\right)$.
b. What, if anything, could you say about

$\lim _{x \rightarrow \infty} g(x)=\int_{1}^{\infty} f(t) d t$ if you knew that $h(t)<\frac{1}{t \sqrt{t}}$ for $t \geq 6$? Explain your answer.
It converges. The graph indicates that $f(t)<h(t)$ for $t>6$. Thus $\int_{6}^{\infty} f(t) d t<\int_{6}^{\infty} h(t) d t=\int_{6}^{\infty} \frac{1}{t^{\frac{3}{2}}} d t$.
The last integral converges since $p=\frac{3}{2}$ and by the comparison test, $\int_{6}^{\infty} f(t) d t$ must converge as well. Since $\int_{1}^{\infty} f(t) d t=\int_{1}^{6} f(t) d t+\int_{6}^{\infty} f(t) d t$, we're adding only a finite amount of area and thus $\int_{1}^{\infty} f(t) d t$ converges.
c. What, if anything, could you say about $\lim _{x \rightarrow \infty} g(x)=\int_{1}^{\infty} f(t) d t$ if you were to instead assume that $\int_{100}^{\infty} k(t) d t=16$? Explain your answer.
Inconclusive. The graph indicates that $f(t)>k(t)$ and thus $\int_{100}^{\infty} f(t) d t>\int_{100}^{\infty} k(t) d t$. The fact that $\int_{100}^{\infty} k(t) d t=16$ means that the integral converges. But this is not enough to determine whether or not $\int_{100}^{\infty} f(t) d t$ converges. And this means that we don't have enough info to determine whether or not $\int_{1}^{\infty} f(t) d t$ converges

