- 2. (30 points) The graphs of f(t), h(t), and k(t) are shown below. You may assume that as $t \to \infty$, the graphs of f, h, and k continue in a fashion similar to the trend observed in the
 - graph on the right. We define $g(x) = \int_{1}^{\infty} f(t) dt$. a. What's g'(2)?
 - By FTC, $g'(x) = 2xf(x^2)$. Thus $g'(2) = 4f(4) \approx 4\left(\frac{1}{3}\right)$.

b. What, if anything, could you say about $\lim_{x \to \infty} g(x) = \int_{1}^{\infty} f(t) dt \text{ if you knew that } h(t) < \frac{1}{t\sqrt{t}} \text{ for } t \ge 6 \text{? Explain your answer.}$

<u>It converges</u>. The graph indicates that f(t) < h(t) for t > 6. Thus $\int_{6}^{\infty} f(t)dt < \int_{6}^{\infty} h(t)dt = \int_{6}^{\infty} \frac{1}{t^{\frac{3}{2}}} dt$.

The last integral converges since $p = \frac{3}{2}$ and by the comparison test, $\int_{6}^{\infty} f(t)dt$ must converge as well. Since $\int_{1}^{\infty} f(t)dt = \int_{1}^{6} f(t)dt + \int_{6}^{\infty} f(t)dt$, we're adding only a finite amount of area and thus $\int_{1}^{\infty} f(t)dt$ converges.

- c. What, if anything, could you say about $\lim_{x\to\infty} g(x) = \int_{1}^{\infty} f(t) dt$ if you were to instead assume
 - that $\int_{100}^{\infty} k(t) dt = 16$? Explain your answer.

Inconclusive. The graph indicates that f(t) > k(t) and thus $\int_{100}^{\infty} f(t)dt > \int_{100}^{\infty} k(t)dt$. The fact that

 $\int_{100} k(t) dt = 16$ means that the integral converges. But this is not enough to determine whether

or not $\int_{100}^{\infty} f(t)dt$ converges. And this means that we don't have enough info to determine whether or not $\int_{0}^{\infty} f(t)dt$ converges.

whether or not $\int_{1}^{1} f(t) dt$ converges