2. (30 points) The graphs of \(f(t) \), \(h(t) \), and \(k(t) \) are shown below. You may assume that as \(t \to \infty \), the graphs of \(f \), \(h \), and \(k \) continue in a fashion similar to the trend observed in the graph on the right. We define \(g(x) = \int_1^x f(t) \, dt \).

a. What’s \(g'(2) \)?

By FTC, \(g'(x) = 2xf(x^2) \). Thus

\[
g'(2) = 4f(4) \approx 4 \left(\frac{1}{3} \right).
\]

b. What, if anything, could you say about

\[
\lim_{x \to \infty} g(x) = \int_1^\infty f(t) \, dt \text{ if you knew that } h(t) < \frac{1}{t^{\sqrt{2}}} \text{ for } t \geq 6? \text{ Explain your answer.}
\]

It converges. The graph indicates that \(f(t) < h(t) \) for \(t > 6 \). Thus

\[
\int_6^\infty f(t) \, dt < \int_6^\infty h(t) \, dt = \int_6^\infty \frac{1}{3} \, dt.
\]

The last integral converges since \(p = \frac{3}{2} \) and by the comparison test, \(\int_6^\infty f(t) \, dt \) must converge as well. Since \(\int_6^\infty f(t) \, dt = \int_1^6 f(t) \, dt + \int_6^\infty f(t) \, dt \), we’re adding only a finite amount of area and thus

\[
\int_1^\infty f(t) \, dt \text{ converges.}
\]

c. What, if anything, could you say about \(\lim_{x \to \infty} g(x) = \int_1^\infty f(t) \, dt \) if you were to instead assume that \(\int_{100}^\infty k(t) \, dt = 16 \)? Explain your answer.

Inconclusive. The graph indicates that \(f(t) > k(t) \) and thus \(\int_{100}^\infty f(t) \, dt > \int_{100}^\infty k(t) \, dt \). The fact that \(\int_{100}^\infty k(t) \, dt = 16 \) means that the integral converges. But this is not enough to determine whether or not \(\int_{100}^\infty f(t) \, dt \) converges. And this means that we don’t have enough info to determine whether or not \(\int_1^\infty f(t) \, dt \) converges.