5. True/False/Explain (40 points) For each of the following determine whether the statements are true or false. To receive credit you must justify your decision with a relevant sentence or two, calculation or picture explaining your thoughts.
a. Suppose that a function h and its derivative h^{\prime} are continuous. If $h^{\prime}(x)<0$ for all $a \leq x \leq b$ then every left-hand sum estimate of $\int_{a}^{b} h(x) d x$ will be an overestimate.

TRUE $h^{\prime}(x)<0$ means that h is strictly decreasing. Thus, every left-had sum will be an overestimate.
b. If $f(x)$ is continuous on $[-5,5]$, then $\int_{0}^{2}|f(x)| d x \leq \int_{0}^{3}|f(x)| d x$ TRUE. $\int_{0}^{3}|f(x)| d x=\int_{0}^{2}|f(x)| d x+\int_{2}^{3}|f(x)| d x \geq \int_{0}^{2}|f(x)| d x$. The last inequality is true since $\int_{2}^{3}|f(x)| d x$ must be zero or greater due to the fact $|f(x)|$ is zero or greater.
c. If $f(x)$ is a positive, continuous function for $x \geq 0$, and if $\lim _{x \rightarrow \infty} f(x)=0$, then $\int_{1}^{\infty} f(x) d x$ converges.
FALSE. If $f(x)=\frac{1}{x}, \lim _{x \rightarrow \infty} f(x)=0$ but $\int_{1}^{\infty} f(x) d x$ diverges $(p=1)$.
d. If $F(x)$ and $G(x)$ are anti-derivatives of a function $f(x)$ that is continuous on $(-\infty, \infty)$, and if $F(5)>G(5)$, then $F(10)>G(10)$.

TRUE. $F(x)=G(x)+C$ since F and G are anti-derivatives of the same function. Since $F(5)>G(5)$, the constant C must be positive. That means that since $F(10)=G(10)+C$, $F(10)>G(10)$

