6. (20 points) The quantity $\int_{1}^{\infty} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}$ roughly models the resistance that football-shaped plankton encounter when falling through water. Note that $a=1, b=2$, and $c=3$ are constants that describe the dimensions of the plankton.

Find a value of M for which $\int_{1}^{M} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}$ differs from the original model of resistance by at most 0.001 . Hint: make use of the integral $\int_{M}^{\infty} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}$ and the comparison test.

We want $\int_{1}^{\infty} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}-\int_{1}^{M} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}$

$$
=\int_{M}^{\infty} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}<0.001
$$

We observe that $\int_{M}^{\infty} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}<\int_{M}^{\infty} \frac{d x}{\sqrt{(x)(x)(x)}}=\int_{M}^{\infty} \frac{1}{x^{\frac{3}{2}}} d x$ since a^{2}, b^{2}, and c^{2} are
all positive constants. So if $\int_{M}^{\infty} \frac{1}{x^{\frac{3}{2}}} d x<0.001$ then $\int_{M}^{\infty} \frac{d x}{\sqrt{\left(a^{2}+x\right)\left(b^{2}+x\right)\left(c^{2}+x\right)}}<0.001$.
Convert to a proper integral and solve:
$\lim _{b \rightarrow \infty} \int_{M}^{b} x^{-\frac{3}{2}} d x=\lim _{b \rightarrow \infty}-\left.2 x^{-\frac{1}{2}}\right|_{M} ^{b}=\lim _{b \rightarrow \infty}\left(\frac{-2}{\sqrt{b}}+\frac{2}{\sqrt{M}}\right)=\frac{2}{\sqrt{M}}<0.001$.
Algebra yields $M>\left(\frac{2}{0.001}\right)^{2}=4,000,000$

