1. [11 points] There is a classic result in mathematics, which states that the number of prime numbers less than any number $x \geq 2$ is approximated by the function $\operatorname{li}(x)=\int_{2}^{x} \frac{d t}{\ln t}$.
a. [3 points] Is li (x) increasing, decreasing, or neither for $x \geq 2$? Provide justification for your answer.
Solution: This function is increasing. To see that it is increasing, we take its derivative

$$
\frac{d}{d x} \operatorname{li}(x)=\frac{d}{d x} \int_{2}^{x} \frac{d t}{\ln t}=\frac{1}{\ln x}>0 .
$$

-OR-
Since $\ln x$ is positive for $x \geq 2$, we know $f(x)=\frac{1}{\ln x}>0$. Since $f(x)$ is the derivative of $\mathrm{li}(x)$, we know $\operatorname{li}(x)$ is increasing.
b. [3 points] Is li (x) concave up, concave down, or neither for $x \geq 2$? Provide justification for your answer.
Solution: This function is concave down. To see it is concave down, take the second derivative:

$$
\frac{d^{2}}{d x^{2}} \mathrm{i}(x)=\frac{d}{d x} \frac{1}{\ln x}=-\frac{1}{x \ln ^{2} x}<0 .
$$

-OR-
Since $\ln x$ is an increasing function, we know $f(x)=\frac{1}{\ln x}$ is decreasing, which means $f^{\prime}(x)<0$. Since $f^{\prime}(x)$ is the second derivative of $\mathrm{li}(x)$, we know $\mathrm{li}(x)$ is concave down.
c. [5 points] Using Integration by Parts, put li (x) into the form

$$
\operatorname{li}(x)=f(x)+\int_{2}^{x} \frac{d t}{(\ln t)^{2}}
$$

What is $f(x)$?
Solution: The way to get the second integral from the first looks like integration by parts. So we integrate $\int_{2}^{x} \frac{d t}{\ln t}$ by parts with $u=\frac{1}{\ln t}$ and $d v=d t$, giving $d u=-\frac{d t}{t(\ln t)^{2}}$ and $v=t$. We get

$$
\left.t \frac{1}{\ln t}\right|_{2} ^{x}+\int_{2}^{x} \frac{d t}{\ln ^{2} t}=\frac{x}{\ln x}-\frac{2}{\ln 2}+\int_{2}^{x} \frac{d t}{\ln ^{2} t} .
$$

So $f(x)=\frac{x}{\ln x}-\frac{2}{\ln 2}$.

