4. [12 points] The function $f(x)=\int_{0}^{x} 10 e^{-t^{2}} d t$ appears frequently in statistical analysis.
a. [6 points] Without calculating them, order $\int_{0}^{2} f(x) d x, \operatorname{MID}(4)$, and $\operatorname{TRAP}(4)$ from smallest to biggest, where $\operatorname{MID}(4)$ and $\operatorname{TRAP}(4)$ are approximations for $\int_{0}^{2} f(x) d x$. Show all work to justify your answer.
Solution: Since $f(x)$ is concave down, $\operatorname{TRAP}(4) \leq \int_{0}^{2} f(x) d x \leq \operatorname{MID}(4)$. We can calculate the concavity of the function $f(x)$ by taking its second derivative:

$$
\frac{d^{2}}{d x^{2}} f(x)=\frac{d^{2}}{d x^{2}} \int_{0}^{x} 10 e^{-t^{2}} d t=\frac{d}{d x} 10 e^{-x^{2}}=-20 x e^{-x^{2}}<0
$$

-OR-
The function $g(x)=10 e^{-x^{2}}$ is positive and decreasing for $x \geq 0$, so we know $g^{\prime}(x)<0$ on this interval. Since $g(x)$ is the derivative of $f(x), g^{\prime}(x)$ is the second derivative of $f(x)$, and we know that $f(x)$ is concave down, which gives $\operatorname{TRAP}(4) \leq \int_{0}^{2} f(x) d x \leq \operatorname{MID}(4)$.
b. [2 points] Consider the following table, which evaluates $f(x)=\int_{0}^{x} 10 e^{-t^{2}} d t$ for the specified values of x.

x	0	0.5	1	1.5	2
$f(x)$	A	4.613	7.468	8.562	B

What are the values of A and B ? Write your answers on the spaces provided, rounding to three decimal places.

$$
\mathrm{A}=\begin{aligned}
& 0
\end{aligned} \mathrm{~B}=\begin{aligned}
& 8.821 \\
& \hline
\end{aligned}
$$

c. [4 points] Using the table provided in part (b) and the answers you found in part (b), calculate $\mathrm{LEFT}(4)$ and RIGHT(4) to estimate the integral $\int_{0}^{2} f(x) d x$. Be sure to show enough work to support your answer.
Solution: For four subintervals on the interval $0 \leq x \leq 2$, we need $\Delta x=0.5$.

$$
\begin{aligned}
\operatorname{LEFT}(4) & =0.5(0+4.613+7.468+8.562)=10.3215 \\
\operatorname{RIGHT}(4) & =0.5(4.613+7.468+8.562+8.821)=14.732
\end{aligned}
$$

