1. [10 points] Indicate if each of the following statements are true or false by circling the correct answer. Justify your answers.
a. [2 points] If $F(x)$ is an antiderivative of an even function $f(x)$, then $F(x)$ must also be an even function.

True False
Solution: $\quad f(x)=3 x^{2}$ has $F(x)=x^{3}+1$ as an antiderivative which is not even (not odd either).
b. [2 points] If $G(x)$ is an antiderivative of $g(x)$ and $(G(x)-F(x))^{\prime}=0$, then $F(x)$ is an antiderivative of $g(x)$.

True False
Solution: $g(x)=G^{\prime}(x)=F^{\prime}(x)$ hence $F(x)$ is an antiderivative of $g(x)$.
c. [2 points] Let $f(t)=b t+c t^{2}$ with $b>0$ and $c>0$, then $\operatorname{Left}(n) \leq \int_{0}^{10} f(t) d t$ for all $n$.
True False

Solution: Since $f^{\prime}(t)=b+2 c t>0$ for $t>0$, then $f(t)$ is increasing on $[0,10]$ and the left sums yield an underestimate.
d. [2 points] The average of an even function $f(x)$ over the interval $[-a, a]$ is equal to twice its average over the interval $[0, a]$.

True False
Solution: Both average are the same. $\frac{1}{2 a} \int_{-a}^{a} f(x) d x=\frac{2}{2 a} \int_{0}^{a} f(x) d x=\frac{1}{a} \int_{0}^{a} f(x) d x$.
e. [2 points] The density $\delta$ of a circular porcelain dinner plate depends on the distance $r$ from the center of the plate. The relationship between $\delta$ and $r$ is shown in the graph below. The center of mass of this plate is located near the edge of the plate.

True False
Solution: The center of mass is at the center.


