5. [8 points] A company wants to design a bicycle ramp using the shape of the graph of the function $f(x)=\frac{4}{3} x^{\frac{3}{2}}$, where x is the length in meters of the base of the ramp.

Find the length s of a ramp with base of length L. Show all your work.
Solution:

$$
\begin{aligned}
s & =\int_{0}^{L} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
& =\int_{0}^{L} \sqrt{1+(2 \sqrt{x})^{2}} d x \\
& =\int_{0}^{L} \sqrt{1+4 x} d x \\
& =\left.\frac{1}{6}(1+4 x)^{3 / 2}\right|_{0} ^{L} \\
& =\frac{1}{6}(1+4 L)^{3 / 2}-\frac{1}{6}
\end{aligned}
$$

