8. [12 points] Sand dunes come in many shapes. Barchan dunes, which have the shape shown on the left, are studied extensively by geomorphologists. Horizontal cross-sections of these dunes are crescent-shaped (the dashed line encloses one such cross-section), and can be approximated as the shape on the right. The area of this shape is given by the formula $A_{h}=K\left(\frac{\pi}{2} Q_{2}-\frac{4}{3} Q_{1}\right)$.

You are studying a barchan dune of 10 meters height, for which the values of Q_{1}, Q_{2}, and K vary with respect to the height h (in meters) of the cross-section according to the functions $Q_{1}(h)=10-h, Q_{2}(h)=20-2 h, K(h)=100-h^{2}$. The density of sand in the dune is $\delta=1600$ kilograms per cubic meter.
a. [5 points] Write an expression for the volume of one slice of sand dune h meters above the ground and Δh meters thick.

Solution:

$$
V_{\text {slice }} \approx A_{h} \Delta h=\left(100-h^{2}\right)\left[\frac{\pi}{2}(20-2 h)-\frac{4}{3}(10-h)\right] \Delta h .
$$

b. [5 points] Write a definite integral that represents the total mass of sand in the dune.

You do not need to evaluate this integral.
Solution: Height of the dune $=10$, so

$$
M_{\text {dune }}=\int_{0}^{10} 1600\left(100-h^{2}\right)\left[\frac{\pi}{2}(20-2 h)-\frac{4}{3}(10-h)\right] d h .
$$

c. [2 points] Write an expression (involving integrals) for the height of the center of mass of the sand dune. You do not need to evaluate this integral.

Solution:

$$
\bar{h}=\frac{\int_{0}^{10} 1600 h\left(100-h^{2}\right)\left[\frac{\pi}{2}(20-2 h)-\frac{4}{3}(10-h)\right] d h}{\int_{0}^{10}\left(100-h^{2}\right)\left[\frac{\pi}{2}(20-2 h)-\frac{4}{3}(10-h)\right] d h}
$$

