7. [8 points] Let S be the solid whose base is the region bounded by the graph of the curve $y=\frac{1}{\sqrt{x(1+a \ln (x))}}$ (for some positive constant $a>0$), the x-axis, the lines $x=1$ and $x=e$. The cross-sections of S perpendicular to the x-axis are squares. Find the exact volume of S. Show all your work to receive full credit.

Solution: As the cross-section of each slice is a square with sidelength y, the volume of one slice is $y^{2} \Delta x$, Therefore the total volume is

$$
\begin{aligned}
\int_{1}^{e}\left(\frac{1}{\sqrt{x(1+a \ln x)}}\right)^{2} d x & =\int_{1}^{e} \frac{1}{x(1+a \ln x)} d x \\
& =\frac{1}{a} \int_{1}^{1+a} \frac{1}{u} d u \\
& =\frac{1}{a} \ln |1+a| .
\end{aligned}
$$

The second line comes from the u-substitution $u=1+a \ln x$.

