9. [11 points] In the following problems show all your work to receive full credit.
a. [7 points] The population of an invasive aquatic plant in a circular lagoon has density given by $\delta(r)=20\left(1-e^{-r^{2}}\right) \mathrm{kg} / \mathrm{m}^{2}$, where r is the distance in meters from its center. The lagoon has radius R meters. Find the exact amount of plants living at the lake.
Solution: Since density is a function of radius, we will slice the biomass into rings with thickness Δr. The mass of one ring is approximately

$$
\delta(r) \cdot 2 \pi r \Delta r .
$$

So now we add up all the slices, and we get total mass

$$
\begin{aligned}
\int_{0}^{R} 20\left(1-e^{-r^{2}}\right) \cdot 2 \pi r d r & =20 \pi \int_{0}^{R} 2 r\left(1-e^{-r^{2}}\right) d r \\
& =20 \pi \int_{0}^{R^{2}}\left(1-e^{-u}\right) d u \\
& =\left.20 \pi\left(u+e^{-u}\right)\right|_{0} ^{R^{2}} \\
& =20 \pi\left(R^{2}+e^{-R^{2}}-1\right)
\end{aligned}
$$

b. [4 points] Let

$$
F(x)=\int_{0}^{x} \sqrt{e^{2 t}-1} d t
$$

Find the exact value of the length of the curve on $0 \leq x \leq 1$.
Solution: The formula for length of an arc is

$$
L=\int_{0}^{1} \sqrt{1+\left(F^{\prime}(x)\right)^{2}} d x
$$

By the second FTC, $F^{\prime}(x)=\sqrt{e^{2 x}-1}$. Therefore the length of the arc is

$$
\begin{aligned}
L=\int_{0}^{1} \sqrt{1+\left(\sqrt{e^{2 x}-1}\right)^{2}} d x & =\int_{0}^{1} \sqrt{1+\left(e^{2 x}-1\right)} d x \\
& =\int_{0}^{1} e^{x} d x \\
& =e-1
\end{aligned}
$$

