**2.** [14 points] Let f(x) be a continuous function on  $0 \le x \le 2$ . The values of f(x) are shown below

| x    | 0  | 0.5 | 1 | 1.5 | 2 |
|------|----|-----|---|-----|---|
| f(x) | -3 | -2  | 1 | 3   | 4 |

**a**. [2 points] Use the left-hand sum with four subintervals to approximate the value of  $\int_0^2 f(x) dx$ . Show all the terms in the sum, and then calculate the numerical value.

- **b.** [2 points] Assume that f(x) has no critical points for  $0 \le x \le 2$ . Is your estimate in (**a**) guaranteed to be an underestimate or overestimate of  $\int_0^2 f(x) dx$ , or there is not enough information to decide? Justify.
- c. [2 points] Use the trapezoid rule with four subintervals to approximate the value of  $\int_0^2 f(x)dx$ . Show all the terms in the sum, and then calculate the numerical value.

**d**. [2 points] Given the data for f(x), is your estimate in (**c**) guaranteed to be an underestimate or overestimate of  $\int_0^2 f(x)dx$ , or there is not enough information to decide? Justify.



Use the midpoint rule with three subintervals to approximate the value of  $\int_0^6 g(x)dx$ . Show all the terms in the sum, and then calculate the numerical value.

**f**. [2 points] Use the right-hand sum with three subintervals to approximate the value of  $\int_{1}^{3} e^{\sqrt{t}} dt$ . Show all the terms in the sum, and then calculate the numerical value.

**g**. [2 points] Is your estimate in (**f**) guaranteed to be an underestimate or overestimate of  $\int_{1}^{3} e^{\sqrt{t}} dt$ , or there is not enough information to decide? Justify.