2. [14 points] Let $f(x)$ be a continuous function on $0 \leq x \leq 2$. The values of $f(x)$ are shown below

x	0	0.5	1	1.5	2
$f(x)$	-3	-2	1	3	4

a. [2 points] Use the left-hand sum with four subintervals to approximate the value of $\int_{0}^{2} f(x) d x$. Show all the terms in the sum, and then calculate the numerical value.
b. [2 points] Assume that $f(x)$ has no critical points for $0 \leq x \leq 2$. Is your estimate in (a) guaranteed to be an underestimate or overestimate of $\int_{0}^{\overline{2}} f(x) d x$, or there is not enough information to decide? Justify.
c. [2 points] Use the trapezoid rule with four subintervals to approximate the value of $\int_{0}^{2} f(x) d x$. Show all the terms in the sum, and then calculate the numerical value.
d. [2 points] Given the data for $f(x)$, is your estimate in (c) guaranteed to be an underestimate or overestimate of $\int_{0}^{2} f(x) d x$, or there is not enough information to decide? Justify.
e. [2 points] Consider the function $g(x)$ whose graph is shown below

Use the midpoint rule with three subintervals to approximate the value of $\int_{0}^{6} g(x) d x$. Show all the terms in the sum, and then calculate the numerical value.
f. [2 points] Use the right-hand sum with three subintervals to approximate the value of $\int_{1}^{3} e^{\sqrt{t}} d t$. Show all the terms in the sum, and then calculate the numerical value.
g. [2 points] Is your estimate in (f) guaranteed to be an underestimate or overestimate of $\int_{1}^{3} e^{\sqrt{t}} d t$, or there is not enough information to decide? Justify.

