9. [9 points] Consider the region R bounded by the curves $y=x^{2}, y=x+2$ and the y-axis, where x and y are measured in meters.

a. [5 points] Let T be the solid obtained by rotating the region R about the x-axis. Find a formula involving definite integrals that computes the volume of T.
b. [2 points] The mass density of the solid T is given by the function $\delta(x)=2-\sqrt{x} \mathrm{~kg}$ per m^{3}. Find a formula involving definite integrals that computes the mass of T.
c. [2 points] Find a formula involving definite integrals that computes the value of \bar{x}, the x coordinate of the center of mass of the solid T.
