9. [9 points] Consider the region R bounded by the curves $y = x^2$, $y = x + 2$ and the y-axis, where x and y are measured in meters.

\begin{center}
\includegraphics[width=0.5\textwidth]{region.png}
\end{center}

a. [5 points] Let T be the solid obtained by rotating the region R about the x-axis. Find a formula involving definite integrals that computes the volume of T.

\[V = \pi \int_a^b [f(x)^2 - g(x)^2] \, dx \]

Where $f(x)$ and $g(x)$ are the upper and lower bounds of the region R.

b. [2 points] The mass density of the solid T is given by the function $\delta(x) = 2 - \sqrt{x}$ kg per m3. Find a formula involving definite integrals that computes the mass of T.

\[M = \int_a^b \delta(x) \, dx \]

Where a and b are the x-coordinates of the intersection points of the curves $y = x^2$ and $y = x + 2$.

c. [2 points] Find a formula involving definite integrals that computes the value of \bar{x}, the x coordinate of the center of mass of the solid T.

\[\bar{x} = \frac{1}{M} \int_a^b x \delta(x) \, dx \]