1. [10 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
a. [2 points] Let (\bar{x}, \bar{y}) be the center of mass of the metal plate bounded by the line $y=1-x$, the x-axis and the y-axis for $0 \leq x \leq 1$.

If the plate has uniform mass density, then $\bar{x}=\bar{y}$.

$$
\begin{array}{|l|}
\hline \text { True } \\
\hline
\end{array}
$$

False
Solution: Since the plate has uniform density and it is symmetric about the line $y=x$, then $\bar{y}=\bar{x}$. It also follows using the formulas for the coordinates of the center of mass

$$
\bar{x}=\frac{\int_{0}^{1} \delta x(1-x) d x}{\int_{0}^{1} \delta(1-x) d x}=\frac{\int_{0}^{1} \delta y(1-y) d y}{\int_{0}^{1} \delta(1-y) d y}=\bar{y} .
$$

b. [2 points] The function $F(x)=\int_{1}^{x^{2}} \sin \left(e^{t}\right) d t$ is an even function.
True False

Solution: The function $F(x)$ is even if it satisfies $F(-x)=F(x)$. Since

$$
F(-x)=\int_{1}^{(-x)^{2}} \sin \left(e^{t}\right) d t=\int_{1}^{x^{2}} \sin \left(e^{t}\right) d t=F(x) .
$$

then $F(x)$ is even.
c. [2 points] Let $h(x)$ be an antiderivative of $g(x)$. If $g(x)$ is measured in kg and x in inches, then the units for $h(x)$ are kg per inch.

True False
Solution: The second fundamental theorem of calculus says that $h(x)=\int_{a}^{x} g(t) d t$ for some contant a. The units of $g(x)$ and x are kg and inches respectively, then the units of $h(x)$ are $\mathrm{kg} \cdot$ inches.
d. [2 points] The function $R(t)=\int_{t}^{1-t} e^{x^{3}} d x$ is decreasing for all values of t.

> True

False
Solution:

$$
R^{\prime}(t)=-e^{(1-t)^{3}}-e^{t^{3}}<0 \text { for all values of } t .
$$

Hence $R(t)$ is decreasing.
e. [2 points] The length of the curve $y=x^{2}$ from $x=0$ to $x=2$ is smaller than 4 .

True
False
Solution: The length L of the curve $y=x^{2}$ from $x=0$ to $x=2$ is given by

$$
L=\int_{0}^{2} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{0}^{2} \sqrt{1+(2 x)^{2}} d x
$$

Using your calculator you can find $L \approx 4.64$. Or, you can argue without using your calculator. The length L of the curve $y=x^{2}$ from $x=0$ to $x=2$ is larger than the length L_{1} of the line connecting the points $(0,0)$ and $(2,4)$. Since $L_{1}=\sqrt{(2-0)^{2}+(4-0)^{2}}>$ $\sqrt{4^{2}}=4$. Hence $L>L_{1}>4$.

