2. [14 points] Let $f(x)$ be a continuous function on $0 \leq x \leq 2$. The values of $f(x)$ are shown below

x	0	0.5	1	1.5	2
$f(x)$	-3	-2	1	3	4

a. [2 points] Use the left-hand sum with four subintervals to approximate the value of $\int_{0}^{2} f(x) d x$. Show all the terms in the sum, and then calculate the numerical value.

Solution:

$$
\operatorname{Left}(4)=\frac{1}{2}(-3-2+1+3)=-\frac{1}{2} .
$$

b. [2 points] Assume that $f(x)$ has no critical points for $0 \leq x \leq 2$. Is your estimate in (a) guaranteed to be an underestimate or overestimate of $\int_{0}^{\overline{2}} f(x) d x$, or there is not enough information to decide? Justify.
Solution: Underestimate, because $f(x)$ is increasing.
c. [2 points] Use the trapezoid rule with four subintervals to approximate the value of $\int_{0}^{2} f(x) d x$. Show all the terms in the sum, and then calculate the numerical value.

$$
\text { Solution: } \quad \frac{\frac{1}{2}(-3-2+1+3)+\frac{1}{2}(-2+1+3+4)}{2}=\frac{-\frac{1}{2}+3}{2}=1.25 .
$$

d. [2 points] Given the data for $f(x)$, is your estimate in (c) guaranteed to be an underestimate or overestimate of $\int_{0}^{2} f(x) d x$, or there is not enough information to decide? Justify.
Solution: There's not enough information to decide, because the data shows that f is not always concave up or always concave down.
e. [2 points] Consider the function $g(x)$ whose graph is shown below

Use the midpoint rule with three subintervals to approximate the value of $\int_{0}^{6} g(x) d x$. Show all the terms in the sum, and then calculate the numerical value.

Solution: $\operatorname{Mid}(3)=2(.5+4.5+4.5)=19$.
f. [2 points] Use the right-hand sum with three subintervals to approximate the value of $\int_{1}^{3} e^{\sqrt{t}} d t$. Show all the terms in the sum, and then calculate the numerical value.

Solution:

$$
\operatorname{Right}(3)=\frac{2}{3}\left(e^{\sqrt{5 / 3}}+e^{\sqrt{7 / 3}}+e^{\sqrt{3}}\right) \approx \frac{2}{3}(3.636+4.606+5.652) \approx 9.262
$$

g. [2 points] Is your estimate in (f) guaranteed to be an underestimate or overestimate of $\int_{1}^{3} e^{\sqrt{t}} d t$, or there is not enough information to decide? Justify.

Solution: We calculate

$$
\frac{d}{d t} e^{\sqrt{t}}=\frac{1}{2}\left(\frac{1}{\sqrt{t}} e^{\sqrt{t}}\right)>0,
$$

so $e^{\sqrt{t}}$ is increasing. Therefore $\operatorname{Right}(3)$ is an overestimate.

