- **3**. [14 points] Consider functions f(x) and g(x) satisfying:
 - (i) g(x) is an odd function.

(ii)
$$\int_{2}^{7} g(x)dx = 3.$$

(iii) $\int_{2}^{7} f(x)dx = 17.$
(iv) $f(2) = 1.$
(v) $\int_{1}^{6} f'(x)dx = 12.$
(vi) $\int_{2}^{7} f'(x)dx = 3.$

Compute the value of the following quantities. If it is impossible to determine their value with the information provided above, write "NI" (not enough information).

a. [2 points]
$$\int_{-2}^{7} g(x) \, dx =$$

Solution: 3, using i and vi.

b. [2 points]
$$\int_{2}^{7} (f(x) - 8g(x)) dx =$$

Solution:
$$-7$$
, using ii and iii.

c. [2 points] f(7) = _____

Solution: 4, using the Fundamental Theorem of Calculus with iv and vi.

d. [2 points]
$$\int_{1}^{6} f'(x+1) \, dx =$$

Solution: We use u substitution, u = x + 1. Making sure to change the limits of integration, we get $\int_2^7 f'(u) du = 3$.

e. [3 points] $\int_{2}^{7} x f'(x) \, dx =$ _____

Solution: We integrate by parts with u = x, dv = f'.

$$\int_{2}^{7} xf'(x)dx = xf(x)|_{2}^{7} - \int_{2}^{7} f(x)dx = (7f(7) - 2f(2)) - 17 = 28 - 2 - 17 = 9.$$

f. [3 points]
$$\int_{2}^{3} xf(x^2 - 2) dx =$$

Solution: We use u substitution $u = x^2 - 2$, du = 2xdx. We get $\frac{1}{2}\int_2^7 f(u)du = \frac{17}{2} = 8.5$.