4. [8 points] In a small town, property values close to the school are determined primarily by how far the land is from the school. The function $\delta(r)=\frac{1}{a r^{2}+1}$ gives the value of the land (in thousands of dollars per m^{2}), where r is the distance (in meters) from the school and a is a positive contant.
a. [5 points] Find a formula containing a definite integral that computes the value of the land that lies in the annulus of inner radius 100 m and outer radius 200 m (figure shown below).

Solution: A thin annular slice has area $A_{\text {slice }} \approx 2 \pi r \Delta r$, and so has an approximate value $V_{\text {slice }} \approx \frac{1}{a r^{2}+1} 2 \pi r \Delta r$. Summing these slice up and taking the limit as $\Delta r \rightarrow 0$, we get the integral

Value of the land in the annulus $=\lim _{\Delta r \rightarrow 0} \sum \frac{1}{a r^{2}+1} 2 \pi r \Delta r=\int_{100}^{200} 2 \pi r \frac{1}{a r^{2}+1} d r$.
b. [3 points] Calculate the exact value of the land that lies in the annulus of inner radius 100 m and outer radius 200 m . Your answer should contain a. Show all your work.

Solution: Let $u=a r^{2}+1$. Then $d u=2 a r d r$. Our integral becomes

$$
\int_{a 100^{2}+1}^{a 200^{2}+1} 2 \pi r \frac{1}{u} \frac{d u}{2 a r}=\frac{\pi}{a} \int_{10,000 a+1}^{40,000 a+1} \frac{d u}{u}=\frac{\pi}{a}(\ln (40,000 a+1)-\ln (10,000 a+1)) .
$$

