- 4. [8 points] In a small town, property values close to the school are determined primarily by how far the land is from the school. The function $\delta(r) = \frac{1}{ar^2 + 1}$ gives the value of the land (in thousands of dollars per m²), where r is the distance (in meters) from the school and a is a positive contant.
 - **a**. [5 points] Find a formula containing a definite integral that computes the value of the land that lies in the annulus of inner radius 100 m and outer radius 200 m (figure shown below).

Solution: A thin annular slice has area $A_{slice} \approx 2\pi r \Delta r$, and so has an approximate value $V_{slice} \approx \frac{1}{ar^2+1} 2\pi r \Delta r$. Summing these slice up and taking the limit as $\Delta r \to 0$, we get the integral

Value of the land in the annulus = $\lim_{\Delta r \to 0} \sum \frac{1}{ar^2 + 1} 2\pi r \Delta r = \int_{100}^{200} 2\pi r \frac{1}{ar^2 + 1} dr.$

b. [3 points] Calculate the exact value of the land that lies in the annulus of inner radius 100 m and outer radius 200 m. Your answer should contain *a*. Show all your work.

Solution: Let
$$u = ar^2 + 1$$
. Then $du = 2ardr$. Our integral becomes
$$\int_{a100^2+1}^{a200^2+1} 2\pi r \frac{1}{u} \frac{du}{2ar} = \frac{\pi}{a} \int_{10,000a+1}^{40,000a+1} \frac{du}{u} = \frac{\pi}{a} \left(\ln(40,000a+1) - \ln(10,000a+1) \right)$$