5. [15 points]

a. [11 points] Let $G(x) = \int_{-2}^{x} g(t)dt$ where the graph of the function g(x) is shown below. The graph of g(x) is a quarter of a circle for $2 \le x \le 4$.

Draw the graph of G(x) for $-3 \le x \le 4$. Make sure your graph indicates the regions where the function G(x) is increasing, decreasing, concave up or concave down, and appropriately reflects the critical points of G(x).

b. [4 points] Consider the function

$$f(x) = \begin{cases} -x & \text{for } x \le 0\\ x^2 & \text{for } 0 < x. \end{cases}$$

Let F(x) be an antiderivative of f(x) with F(-2) = 0. Find a formula for F(x). Your answer should not include any integrals.

$$F(x) = \begin{cases} & \text{for } x \leq 0 \\ & \text{for } 0 < x. \end{cases}$$

Solution: We know that $F(x) = \int_{-2}^{x} f(t)dt$. For $x \leq 0$, this tells us that $F(x) = \int_{-2}^{x} (-t)dt = \frac{-x^2}{2} + \frac{2^2}{2} = -\frac{x^2}{2} + 2$. For x > 0, we have

$$\int_{-2}^{x} f(t)dt = \int_{-2}^{0} (-t)dt + \int_{0}^{x} t^{2}dt = 2 + \frac{x^{3}}{3}.$$
$$F(x) = \begin{cases} -\frac{x^{2}}{2} + 2 & \text{for } x \le 0\\\\ 2 + \frac{x^{3}}{3} & \text{for } 0 < x. \end{cases}$$