5. [15 points]

a. [11 points] Let \(G(x) = \int_{-2}^{x} g(t) \, dt \) where the graph of the function \(g(x) \) is shown below. The graph of \(g(x) \) is a quarter of a circle for \(2 \leq x \leq 4 \).

Fill in the indicated values of \(G(x) \) in the table below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(0)</th>
<th>(2)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(x))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Draw the graph of \(G(x) \) for \(-3 \leq x \leq 4 \). Make sure your graph indicates the regions where the function \(G(x) \) is increasing, decreasing, concave up or concave down, and appropriately reflects the critical points of \(G(x) \).

Solution:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(0)</th>
<th>(2)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(x))</td>
<td>(-2)</td>
<td>(0)</td>
<td>(2)</td>
<td>(0)</td>
<td>(-\pi)</td>
</tr>
</tbody>
</table>
b. [4 points] Consider the function

\[f(x) = \begin{cases}
-x & \text{for } x \leq 0 \\
 x^2 & \text{for } 0 < x.
\end{cases} \]

Let \(F(x) \) be an antiderivative of \(f(x) \) with \(F(-2) = 0 \). Find a formula for \(F(x) \). Your answer should not include any integrals.

\[F(x) = \begin{cases}
-x^2/2 + 2 & \text{for } x \leq 0 \\
2 + x^3/3 & \text{for } 0 < x.
\end{cases} \]

Solution: We know that \(F(x) = \int_{-2}^{x} f(t) dt \). For \(x \leq 0 \), this tells us that \(F(x) = \int_{-2}^{x} (-t) dt = \frac{-t^2}{2} + \frac{2^2}{2} = \frac{-x^2}{2} + 2 \).

For \(x > 0 \), we have

\[
\int_{-2}^{x} f(t) dt = \int_{-2}^{0} (-t) dt + \int_{0}^{x} t^2 dt = 2 + x^3/3.
\]

Thus, \(F(x) = \begin{cases}
-x^2/2 + 2 & \text{for } x \leq 0 \\
2 + x^3/3 & \text{for } 0 < x.
\end{cases} \)