5. [15 points]
a. [11 points] Let $G(x)=\int_{-2}^{x} g(t) d t$ where the graph of the function $g(x)$ is shown below. The graph of $g(x)$ is a quarter of a circle for $2 \leq x \leq 4$.

Fill in the indicated values of $G(x)$ in the table below.

x	-3	-2	0	2	4
$G(x)$					

Draw the graph of $G(x)$ for $-3 \leq x \leq 4$. Make sure your graph indicates the regions where the function $G(x)$ is increasing, decreasing, concave up or concave down, and appropriately reflects the critical points of $G(x)$.

Solution:

x	-3	-2	0	2	4
$G(x)$	-2	0	2	0	$-\pi$

b. [4 points] Consider the function

$$
f(x)= \begin{cases}-x & \text { for } x \leq 0 \\ x^{2} & \text { for } 0<x\end{cases}
$$

Let $F(x)$ be an antiderivative of $f(x)$ with $F(-2)=0$. Find a formula for $F(x)$. Your answer should not include any integrals.
$F(x)= \begin{cases}\square & \text { for } x \leq 0 \\ & \text { for } 0<x .\end{cases}$
Solution: We know that $F(x)=\int_{-2}^{x} f(t) d t$. For $x \leq 0$, this tells us that $F(x)=$ $\int_{-2}^{x}(-t) d t=\frac{-x^{2}}{2}+2^{2} / 2=-x^{2} / 2+2$.
For $x>0$, we have

$$
\begin{gathered}
\int_{-2}^{x} f(t) d t=\int_{-2}^{0}(-t) d t+\int_{0}^{x} t^{2} d t=2+x^{3} / 3 \\
F(x)= \begin{cases}-x^{2} / 2+2 & \text { for } x \leq 0 \\
2+x^{3} / 3 & \text { for } 0<x\end{cases}
\end{gathered}
$$

