6. [11 points] A swimming pool 10 m long and 5 m wide has varying depth. Its maximum depth is 1 m as shown in the picture below

The swimming pool has water up to a level of maximum depth of 0.6 m . The density of water is 1000 kg per m^{3}. Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ for the acceleration due to gravity.
a. [9 points] Write an expression that approximates the work done in lifting a horizontal slice of water with thickness Δy meters, that is at a distance of y meters above the bottom, to the top of the swimming pool.

Solution: First we must find a formula for the length of the swimming pool at depth for a given height above the bottom. Let's call this function $l(y)$. We know that $l(0)=1.5$ and $l(1)=10$. Since $l(y)$ is a linear function, this tells us that $l(y)=8.5 y+1.5$.
The volume of such a slice is $\Delta y(8.5 y+1.5) \cdot 5$. Multiplying by $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $9.8 \mathrm{~m} / \mathrm{s}^{2}$ gives us the weight of the water in Newtowns. The amount the water needs to be lifted is $(1-y)$. We therefore get:

$$
W_{\text {slice }} \approx 1000 \cdot 9.8 \cdot(8.5 y+1.5) \cdot 5 \cdot(1-y) \Delta y .
$$

b. [2 points] Write a definite integral that computes the work required to pump all the water to the top of the pool.

Solution: Work $=\int_{0}^{0.6} 1000 \cdot 9.8 \cdot 5(8.5 y+1.5)(1-y) d y$ Joules.

