7. [8 points] Let S be the solid whose base is the region bounded by the curves $y=x^{2}, y=6-x$ and $x=0$ and whose cross sections parallel to the x-axis are squares. Find a formula involving definite integrals that computes the volume of S.

Solution: First we solve for where the two curves intersect. $6-x=x^{2}$ implies $0=x^{2}+x-6=$ $(x+3)(x-2)$, so $x=2$, which implies $y=4$. We have to split the problem into two cases, one when $0 \leq y \leq 4$, and one when $4 \leq y \leq 6$. We will choose thin horizontal slices, and integrate in terms of y, so we need to solve for x in terms of $y: x=\sqrt{y}$ and $x=6-y$ are our two curves.
In the case of $0 \leq y \leq 4$, a thin slice has volume $V_{\text {slice }} \approx(\sqrt{y})^{2} \Delta y$. In the second case, $4 \leq y \leq 6$, a thin slice has volume $V_{\text {slice }} \approx(6-y)^{2} \Delta y$. Hence the total volume of the solid is given by

$$
V=\int_{0}^{4} y d y+\int_{4}^{6}(6-y)^{2} d y
$$

