8. [11 points] A tortoise and a hare decide to race. They decide to race a straight 5 kilometer course. The race starts at 12 pm . The hare is much faster than the tortoise, so he's confident that he'll win. The hare runs very fast for 30 minutes, getting to what it knows is the half-way point. The hare is tired (it had been studying for exams the night before), so it decides to take a nap. It falls asleep for 5 hours, wakes up, discovers that (now that it's 5:30) it's dark, and runs to the finish line, arriving at 6 pm . When it gets there, it's surprised to see the tortoise is already there. "I hope you enjoyed your nap! I've been here for an hour, since 5 o'clock!" the tortoise says. "Steady and slow is the way to go: I kept going the same speed the whole time."
Let $H(t)$ be the hare's velocity and $T(t)$ be the tortoise's velocity, in km per hour, where t is measured in hours after 12 pm .

Let

$$
R(t)=\int_{0}^{t} H(s) d s-\int_{0}^{t} T(s) d s
$$

a. [1 point] At times when $R(t)>0$, who is winning the race?

Solution: The hare
b. [2 points] What is the practical interpretation of the function $|R(t)|$? Include units.

Solution: $|R(t)|$ is the distance in km between the tortoise and the hare t hours after 12 pm .
c. [3 points] For what values of $0 \leq t \leq 6$, does $R(t)=0$?

Solution: $\quad t=0, t=2.5, t=6$.
d. [2 points] For what values of $0 \leq t \leq 6$ is the function $\frac{d R}{d t}<0$?

Solution: $0.5<t<5$.
e. [3 points] Write down a definite integral that represents the hare's average velocity from 12 to $12: 30$. What is the value of the hare's average velocity during this time?
Solution: $\frac{1}{.5} \int_{0}^{1 / 2} H(s) d s$. We know that $\int_{0}^{1 / 2} H(s) d s=2.5$, because the Hare has gotten halfway by $12: 30$. Therefore, the average velocity is $5 \mathrm{~km} / \mathrm{hr}$.

