1. [7 points] The table below gives values of a function, $f(x)$, at several points.

x	4	5	6	7	8
$f(x)$	3	5	4	1	2

a. [3 points] Estimate the integral $\int_{4}^{8} f(x) d x$ using $\operatorname{Mid}(2)$. Be sure to write out all the terms of your sum.
b. [4 points] Simplify the integral

$$
\int_{\ln (4)}^{\ln (7)} e^{x} f\left(e^{x}\right) d x
$$

and estimate the resulting integral using $\operatorname{Trap}(3)$. Be sure to show how you simplified the integral and to write out all the terms of your sum.
2. [5 points] Suppose that $g(x)=w(x) v(x)$ where the functions $w(x)$ and $v(x)$ are both positive, decreasing and concave down on the interval $[0,1]$.
a. [2 points] Write the derivatives $g^{\prime}(x)$ and $g^{\prime \prime}(x)$ in terms of $w(x), v(x)$, and their derivatives.

$$
\begin{aligned}
& g^{\prime}(x)=\square \\
& g^{\prime \prime}(x)= \\
& \hline
\end{aligned}
$$

b. [3 points] Circle the method(s) that will ALWAYS UNDERESTIMATE the integral $\int_{0}^{1} g(x) d x$.
Left
Right
Mid
Trap

