3. [15 points] Consider a hemisphere of radius 3 m shown below. The hemisphere is filled to the top with water. The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

a. [4 points] Find an expression for the mass of a circular slice of thickness Δz that is z meters above the base of the hemisphere.

Mass=
b. [7 points] What is the center of mass of the hemisphere of water? Justify your answers. Please limit any verbal explanation to a sentence or two.

$$
\bar{x}=
$$

$$
\bar{y}=
$$

$$
\bar{z}=
$$

c. [4 points] Suppose water is evaporating from the hemisphere and the height of the water is decreasing at a constant rate of $1 \mathrm{~m} /$ day. Assuming $0 \leq t<3$, write an expression involving integrals which gives the z-coordinate of the center of mass of the water, t days after the water started evaporating. Do not evaluate any integrals.

