1. [7 points] The table below gives values of a function, $f(x)$, at several points.

x	4	5	6	7	8
$f(x)$	3	5	4	1	2

a. [3 points] Estimate the integral $\int_{4}^{8} f(x) d x$ using $\operatorname{Mid}(2)$. Be sure to write out all the terms of your sum.
Solution:
$\operatorname{Mid}(2)=2(f(5)+f(7))=2(5+1)=12$.
b. [4 points] Simplify the integral $\int_{\ln (4)}^{\ln (7)} e^{x} f\left(e^{x}\right) d x$ and estimate the resulting integral using $\operatorname{Trap}(3)$. Be sure to show how you simplified the integral and to write out all the terms of your sum.

Solution:

Let $u=e^{x}$ then $d u=e^{x} d x$. Changing the bounds of integration upper bound $=e^{\ln (7)}=7$, lower bound $=e^{\ln (4)}=4$. Thus $\int_{\ln (4)}^{\ln (7)} e^{x} f\left(e^{x}\right) d x=\int_{4}^{7} f(u) d u$.
$\operatorname{Trap}(3)=\frac{1}{2}(\operatorname{Left}(3)+\operatorname{Right}(3))=\frac{1}{2} f(4)+f(5)+f(6)+\frac{1}{2} f(7)=11$.
2. [5 points] Suppose that $g(x)=w(x) v(x)$ where the functions $w(x)$ and $v(x)$ are both positive, decreasing and concave down on the interval $[0,1]$.
a. [2 points] Write the derivatives $g^{\prime}(x)$ and $g^{\prime \prime}(x)$ in terms of $w(x), v(x)$, and their derivatives.
Solution:
$g^{\prime}(x)=w^{\prime}(x) v(x)+w(x) v^{\prime}(x)$
$g^{\prime \prime}(x)=w^{\prime \prime}(x) v(x)+2 w^{\prime}(x) v^{\prime}(x)+w(x) v^{\prime \prime}(x)$
b. [3 points] Circle the method(s) that will ALWAYS UNDERESTIMATE the integral $\int_{0}^{1} g(x) d x$.

Left \quad Right \quad Mid

