3. [15 points] Consider a hemisphere of radius 3 m shown below. The hemisphere is filled to the top with water. The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

a. [4 points] Find an expression for the mass of a circular slice of thickness Δz that is z meters above the base of the hemisphere.

Using the Pythagorean formula $r(z)=\sqrt{9-z^{2}}$. We have Mass $=1000 \pi r(z)^{2} \Delta z$. Plugging in $r(z)$ we have Mass $=1000 \pi\left(9-z^{2}\right) \Delta z$.
b. [7 points] What is the center of mass of the hemisphere of water? Justify your answers. Please limit any verbal explanation to a sentence or two.

$$
\begin{aligned}
& \text { Solution: } \\
& \bar{x}=0 \text { and } \bar{y}=0 \text { because density is constant and th } \\
& x \text { and } y \text { axes. } \\
& \bar{z}=\frac{\int_{0}^{3} 1000 \pi z\left(9-z^{2}\right) d z}{\int_{0}^{3} 1000 \pi\left(9-z^{2}\right) d z}=\frac{\int_{0}^{3} z\left(9-z^{2}\right) d z}{\int_{0}^{3}\left(9-z^{2}\right) d z}=9 / 8 .
\end{aligned}
$$

$$
\bar{x}=0 \text { and } \bar{y}=0 \text { because density is constant and the hemisphere is symmetric about the }
$$

c. [4 points] Suppose water is evaporating from the hemisphere and the height of the water is decreasing at a constant rate of $1 \mathrm{~m} /$ day. Assuming $0 \leq t<3$, write an expression involving integrals which gives the z-coordinate of the center of mass of the water, t days after the water started evaporating. Do not evaluate any integrals.
Solution: The height of the water at time t is $3-t$. Thus we now integrate from 0 to $3-t . \bar{z}=\frac{\int_{0}^{3-t} 1000 \pi z\left(9-z^{2}\right) d z}{\int_{0}^{3-t} 1000 \pi\left(9-z^{2}\right) d z}=\frac{\int_{0}^{3-t} z\left(9-z^{2}\right) d z}{\int_{0}^{3-t}\left(9-z^{2}\right) d z}$

