- 5. [10 points] Suppose that f(x) and g(x) are twice differentiable functions defined for all x with the following properties:
 - f(0) = g(0) and f(1) = g(1).
 - f(x) and g(x) are increasing.
 - f(x) is concave down and g(x) is concave up.

For each of the following questions, circle the correct answer. No justification is necessary.

Solution: +2 if correct. CIRCLE CORRECT ANSWER IF WRONG.

a. [2 points] Which is larger, $\int_0^1 f(x)dx$ or $\int_0^1 g(x)dx$?

 $\int_0^1 f(x)dx \qquad \qquad \int_0^1 g(x)dx$

Equal

Impossible to determine

b. [2 points] Which is larger, $\int_0^1 |f(x)| dx$ or $\int_0^1 |g(x)| dx$?

 $\int_0^1 |f(x)| dx \qquad \qquad \int_0^1 |g(x)| dx$

Equal Impossible to determine

c. [2 points] Which is larger, $\int_0^1 f'(x)dx$ or $\int_0^1 g'(x)dx$?

 $\int_0^1 f'(x)dx \qquad \qquad \int_0^1 g'(x)dx \qquad \qquad \boxed{\text{Equal}}$

Impossible to determine

d. [2 points] Which is larger, $\int_0^1 x f'(x) dx$ or $\int_0^1 x g'(x) dx$?

 $\int_0^1 x f'(x) dx$ Equal Impossible to determine

e. [2 points] Which is larger, $\int_0^1 f(x)f'(x)dx$ or $\int_0^1 g(x)g'(x)dx$?

 $\int_0^1 f(x)f'(x)dx \qquad \int_0^1 g(x)g'(x)dx \qquad \boxed{\text{Equal}}$

Impossible to determine