5. [10 points] Suppose that $f(x)$ and $g(x)$ are twice differentiable functions defined for all x with the following properties:

- $f(0)=g(0)$ and $f(1)=g(1)$.
- $f(x)$ and $g(x)$ are increasing.
- $f(x)$ is concave down and $g(x)$ is concave up.

For each of the following questions, circle the correct answer. No justification is necessary.
Solution: +2 if correct. CIRCLE CORRECT ANSWER IF WRONG.
a. [2 points] Which is larger, $\int_{0}^{1} f(x) d x$ or $\int_{0}^{1} g(x) d x$?

$$
\int_{0}^{1} f(x) d x \quad \int_{0}^{1} g(x) d x \quad \text { Equal } \quad \text { Impossible to determine }
$$

b. [2 points] Which is larger, $\int_{0}^{1}|f(x)| d x$ or $\int_{0}^{1}|g(x)| d x$?

$$
\begin{array}{lll}
\int_{0}^{1}|f(x)| d x & \int_{0}^{1}|g(x)| d x & \text { Equal } \quad \text { Impossible to determine }
\end{array}
$$

c. [2 points] Which is larger, $\int_{0}^{1} f^{\prime}(x) d x$ or $\int_{0}^{1} g^{\prime}(x) d x$?

$$
\begin{array}{lll}
\int_{0}^{1} f^{\prime}(x) d x & \int_{0}^{1} g^{\prime}(x) d x & \text { Equal } \\
\text { Impossible to determine }
\end{array}
$$

d. [2 points] Which is larger, $\int_{0}^{1} x f^{\prime}(x) d x$ or $\int_{0}^{1} x g^{\prime}(x) d x$?

$$
\int_{0}^{1} x f^{\prime}(x) d x \quad \int_{0}^{1} x g^{\prime}(x) d x \quad \text { Equal } \quad \text { Impossible to determine }
$$

e. [2 points] Which is larger, $\int_{0}^{1} f(x) f^{\prime}(x) d x$ or $\int_{0}^{1} g(x) g^{\prime}(x) d x$?

$$
\begin{array}{lll}
\int_{0}^{1} f(x) f^{\prime}(x) d x & \int_{0}^{1} g(x) g^{\prime}(x) d x & \text { Equal } \quad \text { Impossible to determine }
\end{array}
$$

