9. [12 points] The Nub's Nob Ski Area keeps a massive supply of hot chocolate. The hot chocolate is stored in a container shaped like a cone with the point end removed as shown below. The height of the container is 9 meters, and it has lower radius 6 meters and upper radius 3 meters. The hot chocolate has a density of $3000 \mathrm{~kg} / \mathrm{m}^{3}$. Recall the gravitational constant is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

a. [3 points] Write a formula for $r(h)$, the radius of a circular cross section of the container h meters above the base.

Looking at a vertical cross section of the cone we see that $r(h)$ is the width of a trapezoid at height h. The width of the trapezoid is decreasingly linearly thus $r(h)$ must be a linear function with $r(0)=6$ and $r(9)=3$. Therefore $r(h)=3+\frac{3(9-h)}{9}=6-h / 3$.
b. [6 points] Write a formula in terms of $r(h)$ for the work required to lift a slice of hot chocolate of thickness Δh from height h to the top of the container.

Solution: The mass of the slice is $3000 \pi r(h)^{2} \Delta h$. The slice must be lifted $9-h$ meters. Therefore the work to lift the slice is $3000 g \pi r(h)^{2}(9-h) \Delta h$.
c. [3 points] Write an integral that gives the work required to lift all of the hot chocolate to the top of the container. Do not evaluate this integral.
Solution: Integrating the above function from 0 to 9 the work is $\int_{0}^{9} 3000 g \pi r(h)^{2}(9-h) d h$

