6. [10 points] Your eccentric neighbor is rollerblading down the street away from you at constant speed with cardboard wings strapped to his back. He is 30 meters away from you when rockets strapped to his rollerskates ignite and quickly burn out. The velocity $v(t)$ of your neighbor, measured in meters per second, t seconds after he starts moving away from you is given below.

$$v(t) = \begin{cases}
4 & \text{if } 0 \leq t \leq 5 \\
-0.64t^2 + 12.8t - 44 & \text{if } 5 < t \leq 10 \\
-1.9t + 39 & \text{if } 10 < t \leq 20
\end{cases}$$

a. [1 point] At what t value did the rockets ignite?

The rockets ignited at $t = \boxed{5}$

Let $p(t)$ be the distance between you and your neighbor, measured in meters, t seconds after he starts moving away from you.

b. [4 points] Determine the value of $p(0)$ and $p(10)$.

$$p(0) = \boxed{30}$$
$$p(10) = \boxed{39}$$

c. [5 points] Sketch a well-labeled graph of $p(t)$ on the domain $0 \leq t \leq 20$ being sure the concavity of the graph is clear.