3. [13 points] Use the table and the fact that
\[\int_0^{10} f(t) dt = 350 \]

To evaluate the definite integrals below exactly (i.e., no decimal approximations). Assume \(f'(t) \) is continuous and does not change sign between any consecutive \(t \)-values in the table.

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(t))</td>
<td>0</td>
<td>70</td>
<td>(e^5)</td>
<td>(e^3)</td>
<td>0</td>
<td>(\pi/2)</td>
<td>(\pi)</td>
</tr>
</tbody>
</table>

a. [4 points] \(\int_0^{10} tf'(t) dt \)

\[
\int_0^{10} tf'(t) dt = tf(t)|_{t=0}^{t=10} - \int_0^{10} f(t) dt
\]
\[= 10f(10) - \int_0^{10} f(t) dt
\]
\[= 700 - 350 = 350. \]

b. [4 points] \(\int_{20}^{30} \frac{f'(t)}{f(t)} dt \)

\[
\int_{20}^{30} \frac{f'(t)}{f(t)} dt = \int_{f(20)}^{f(30)} \frac{1}{u} du
\]
\[= \ln |u| \bigg|_{f(20)}^{f(30)}
\]
\[= \ln |f(30)| - \ln |f(20)|
\]
\[= 3 - 5 = -2. \]

c. [5 points] \(\int_{50}^{60} f(t)f'(t) \sin(f(t)) dt \)

\[
\int_{50}^{60} f(t)f'(t) \sin(f(t)) dt = \int_{f(50)}^{f(60)} w \sin(w) dw
\]
\[= -w \cos(w) \bigg|_{f(50)}^{f(60)} + \int_{f(50)}^{f(60)} \cos(w) dw
\]
\[= -\pi \cos(\pi) + \int_{\pi/2}^{\pi} \cos(w) dw
\]
\[= \pi - 1. \]