7. [16 points] In each part, circle "True" if the statement is always true and circle "False" otherwise. No justification is necessary. Any unclear markings will be marked incorrect.
Solution:
a. [8 points] Suppose $g(x)$ is a positive function, defined for all real numbers x, with continuous first derivative.
(1) $\int_{0}^{7} x g\left(x^{2}\right) d x=\int_{0}^{7} g(u) d u$.

True
False
(2) $\int_{0}^{7} x g\left(x^{2}\right) d x=\frac{1}{2} \int_{0}^{49} g(t) d t$.

True
False
(3) $\int_{0}^{7} x g\left(x^{2}\right) d x=7 g(49)-\int_{0}^{7} g\left(x^{2}\right) d x$.

True
False
(4) $\int_{0}^{7} x g\left(x^{2}\right) d x=\frac{49}{2} g(49)-\int_{0}^{7} x^{3} g^{\prime}\left(x^{2}\right) d x$.
b. [8 points] Suppose $h(y)$ is the density, in grams per cm , of a thin rod of length $10 \mathrm{~cm}, y$ cm from one end. Suppose the rod has mass M.
(1) $\int_{0}^{5} h(y) d y=\frac{M}{2}$.

True
(2) The center of mass of the rod is $\int_{0}^{10} y h(y) d y$.

True
False
(3) If $h(y)$ is a constant function, then $h(y)=\frac{M}{10}$.

False
(4) The average value of $h(y)$ on $[0,10]$ is $\frac{M}{10}$.

