3. [8 points]
a. [4 points] Write a formula for the function $G(t)$ whose derivative is $\cos (5 t)$ and whose graph passes through the point $(0,3)$.

## Solution:

$$
G(t)=\frac{\sin (5 t)}{5}+3
$$

Alternatively:

$$
G(t)=\int_{0}^{t} \cos (5 u) d u+3
$$

b. [4 points] Write a formula for the function $H(t)$ whose derivative is $\cos \left(t^{5}\right)$ and whose graph passes through the point $(0,3)$.

## Solution:

$$
H(t)=\int_{0}^{t} \cos \left(u^{5}\right) d u+3
$$

4. [5 points] A deep sea diver is swimming to the surface of the water from a depth of 50 meters. At a depth of $x$ meters below the surface of the water, the water pressure is changing at a rate of $a(x)$ pascals/meter (pascal is the metric unit for pressure). If the water pressure is 592,000 pascals at a depth of 50 meters, write an expression involving integrals that gives the water pressure in pascals when the diver is $x$ meters from the surface of the water.

## Solution:

$$
p(x)=592,000+\int_{50}^{x} a(t) d t
$$

Alternative solution:

$$
p(x)=\int_{0}^{x} a(t) d t
$$

This assumes that the pressure at the surface of the water is 0 .

