5. [16 points] Suppose that $f(x)$ is a function with the following properties:

- $\int_{0}^{1} f(x) d x=-5$.
- $\int_{0}^{3} f^{\prime}(x) d x=10$.
- The average value of $f(x)$ on $[1,1.5]$ is -4 .
- $\int_{2}^{4} x f^{\prime}(x) d x=8$.

In addition, a table of values for $f(x)$ is given below.

x	0	1	2	3	4
$f(x)$	-7	-2	-2	m	0

Calculate (a)-(d) exactly. Show your work and do not write any decimal approximations.
a. [4 points] $m=3$

Solution: Using the Fundamental Theorem in $\int_{0}^{3} f^{\prime}(x) d x=10$ we get $f(3)-f(0)=10$ which gives $m-(-7)=10$ so $m=3$.
b. [4 points] $\int_{0}^{1.5} f(x) d x=-7$

Solution:

$$
\int_{0}^{1.5} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{1.5} f(x) d x=-5+0.5(-4)=-7
$$

c. [4 points] $\int_{2}^{4} f(x) d x=-4$

Solution: Using integration by parts in $\int_{2}^{4} x f^{\prime}(x) d x=8$ we get $(4 f(4)-2 f(2))-$ $\int_{2}^{4} f(x) d x=8$ which gives $\int_{2}^{4} f(x) d x=0-2(-2)-8=-4$.
d. [4 points] $\int_{4}^{16} f^{\prime}(\sqrt{x}) d x=16$

Solution: Using the substitution $u=\sqrt{x}$ we get

$$
\int_{4}^{16} f^{\prime}(\sqrt{x}) d x=\int_{2}^{4} f^{\prime}(u) \cdot 2 u d u=2 \cdot 8=16
$$

