6. [10 points] O-guk loves to eat vegetables, especially carrots. Every morning, he eats a bin filled to the top with shredded carrots. The bin is in the shape of a half cylinder and it is pictured below. The density of the carrots at height $h \mathrm{~m}$ from the bottom of the bin is given by $\delta(h) \mathrm{kg} / \mathrm{m}^{3}$.

a. [6 points] To get an idea of how much he eats, write an expression involving integrals that gives the mass of the carrots in the bin. Include units. Don't compute any integrals.

Solution: The volume of a slice at height h of thickness Δh is $4 \cdot L \cdot \Delta h$ where L is the width of the slice. Using geometry we have $\left(\frac{L}{2}\right)^{2}+(1-h)^{2}=1^{2}$ so $L=2 \sqrt{1-(1-h)^{2}}$. The mass of the slice is then $\delta(h) \cdot 4 \cdot 2 \sqrt{1-(1-h)^{2}} \cdot \Delta h$ kilograms. The total mass of the carrots in the bin is given by

$$
\int_{0}^{1} \delta(h) \cdot 4 \cdot 2 \sqrt{1-(1-h)^{2}} d h \quad \mathrm{kgs} .
$$

b. [4 points] Write an expression involving integrals that gives the h-center of mass of the carrots in the bin. Don't compute any integrals.

Solution:

$$
\bar{h}=\frac{\int_{0}^{1} h \cdot \delta(h) \cdot 4 \cdot 2 \sqrt{1-(1-h)^{2}} d h}{\int_{0}^{1} \delta(h) \cdot 4 \cdot 2 \sqrt{1-(1-h)^{2}} d h}
$$

