2. [13 points] Suppose $Z(t)$ is the rate of change, in metric tons per hour, of the biomass (i.e. total mass) of zooplankton in Loch Ness t hours after 8am on January 25, 2017.
Below is a portion of the graph of $Z(t)$. Note that this graph is linear on the intervals $[-6,-4],[-4,-1],[-1,3]$, and $[3,4]$. Also note that the portion of the graph for $4 \leq t \leq 6$ is the upper half of a circle centered at the point $(5,1)$.

$$
y \text { (metric tons } / \mathrm{hr} \text {) }
$$

Let $B(t)$ be the biomass, in metric tons, of zooplankton in Loch Ness t hours after 8am on January 25, 2017.
a. [10 points] Carefully sketch a graph of $y=B(t)-B(3)$ for $-6 \leq t \leq 6$ using the axes provided below. If there are features of this function that are difficult for you to draw, indicate these on your graph. Be sure that local extrema and concavity are clear. Label the coordinates of the points on your graph at $t=-4,-1,3,6$.

b. [3 points] Define $A(h)$ to be the average biomass (in metric tons) of zooplankton in Loch Ness during the first h hours after 8am on January 25, 2017. Write an expression for $A(h)$. (Your expression may involve integrals, the function Z, and/or the function B.)

