- 4. [12 points] For each of the questions below, circle <u>all</u> of the available correct answers. Circle "NONE OF THESE" if none of the available choices are correct.
 - **a**. [3 points] Which of the following are antiderivatives of the function $2\sin(x)\cos(x)$?

i.
$$\frac{1}{2}\cos^2(x) + \frac{1}{2}\sin^2(x)$$
 ii. $\sin^2(3) - \cos^2(x)$
iii. $\int_0^{\pi} 2\sin(x)\cos(x) dx$ iv. $\sin^2(x)$ v. NONE OF THESE

b. [3 points] Which of the following integrals give the arc length of the curve $y = e^{2x}$ from x = 0 to x = 2?

i.
$$\int_0^2 \sqrt{1 + 4e^{2x}} dx$$

ii.
$$\int_0^2 \sqrt{1 + e^{4x}} dx$$

iii.
$$\frac{1}{2} \int_0^1 \sqrt{1 + 4e^{2s}} ds$$

iv.
$$\int_0^2 \sqrt{1 + 4e^{4u}} du$$

v. None of these

c. [3 points] Which of the following are antiderivatives of the function $\frac{1}{\ln x}$?

i.
$$\ln(\ln(x)) + 4$$
 ii. $\int_{2}^{e} \frac{1}{\ln t} dt$

iii.
$$\int_{1}^{\ln x} \frac{e^{t}}{t} dt$$
 iv. $\int_{2}^{x} \frac{1}{\ln t} dt$ v. None of these

d. [3 points] An object with variable mass is lifted up 30 meters at a constant rate. This process takes 10 seconds. Suppose that m(t) is the mass of the object, in kilograms, t seconds after the lifting begins. Let g be the acceleration due to gravity in m/s². (So $g \approx 9.8$.) Which of the following expressions give the work, in joules, required to raise the object?

i.
$$3 \int_0^{10} g \cdot m(t) dt$$

ii. $\int_0^{30} g \cdot m\left(\frac{x}{3}\right) dx$
iii. $\frac{1}{3} \int_0^{30} g \cdot m(x) dx$
iv. $\int_0^{10} g \cdot 3t \cdot m(t) dt$
v. None of these