3. [12 points] A new top secret weather balloon has the ability to make it rain orange soda. The base of the balloon is a solid cylinder with a radius of 2 meters and a height of 1 meter. Above that is a solid obtained by taking the portion of the function $y=\frac{5}{1+x^{2}}$ for $0 \leq x \leq 2$ and rotating it around the y-axis (where x and y are measured in meters). The balloon is made of a light metal which has a constant density $\delta \mathrm{kg} / \mathrm{m}^{3}$. The balloon is pictured on the right. (The picture is not to scale.)

a. [4 points] Write down an expression in terms of y (but not x) that approximates the volume, in cubic meters, of a horizontal slice of the weather balloon of thickness Δy at a height y meters above the ground where $1<y<5$.
Solution: Solving the equation $y=\frac{5}{1+x^{2}}$ for x gives the radius of a circular cross section at height y. The volume of the slice is then approximately $\pi\left(\frac{5}{y}-1\right) \cdot \Delta y$ cubic meters
b. [4 points] Write down an expression involving one or more integrals which gives the total mass of the weather balloon in kilograms. Do not evaluate any integrals in this expression.
Solution: We integrate the solution from part (a) from 1 to 5 replacing Δy with $d y$ and then add 4π (the volume of the cylindrical base) to get the total volume of the balloon. Finally we multiply this entire expression by the constant density δ to obtain a total mass of

$$
4 \pi \delta+\int_{1}^{5} \delta \pi\left(\frac{5}{y}-1\right) d y \quad \text { kilograms. }
$$

c. [4 points] Write down an expression involving one or more integrals which gives the y coordinate of the center of mass of the weather balloon. Do not evaluate any integrals in this expression.
Solution: We rewrite the first term in (b) as $\int_{0}^{1} 4 \pi d y$ and include a factor of y in each integral and then divide by the total mass to find that the y-coordinate of the center of mass is

$$
\frac{\int_{0}^{1} y \cdot 4 \pi \delta d y+\int_{1}^{5} y \cdot \delta \pi\left(\frac{5}{y}-1\right) d y}{4 \pi \delta+\int_{1}^{5} \delta \pi\left(\frac{5}{y}-1\right) d y}
$$

