- **4.** [12 points] For each of the questions below, circle <u>all</u> of the available correct answers. Circle "NONE OF THESE" if none of the available choices are correct.
 - a. [3 points] Which of the following are antiderivatives of the function $2\sin(x)\cos(x)$?

i.
$$\frac{1}{2}\cos^2(x) + \frac{1}{2}\sin^2(x)$$
 ii. $\sin^2(3) - \cos^2(x)$ iii. $\int_0^\pi 2\sin(x)\cos(x)\,dx$ iv. $\sin^2(x)$ v. None of these

b. [3 points] Which of the following integrals give the arc length of the curve $y = e^{2x}$ from x = 0 to x = 2?

i.
$$\int_0^2 \sqrt{1+4e^{2x}}\,dx$$
 ii.
$$\int_0^2 \sqrt{1+e^{4x}}\,dx$$
 iii.
$$\int_0^2 \sqrt{1+e^{4x}}\,dx$$
 iv.
$$\int_0^2 \sqrt{1+4e^{4u}}\,du$$
 v. None of these

c. [3 points] Which of the following are antiderivatives of the function $\frac{1}{\ln x}$?

i.
$$\ln (\ln (x)) + 4$$
 ii. $\int_2^e \frac{1}{\ln t} \, dt$ iii. $\int_1^{\ln x} \frac{e^t}{t} \, dt$ iv. $\int_2^x \frac{1}{\ln t} \, dt$ v. None of these

d. [3 points] An object with variable mass is lifted up 30 meters at a constant rate. This process takes 10 seconds. Suppose that m(t) is the mass of the object, in kilograms, t seconds after the lifting begins. Let g be the acceleration due to gravity in m/s^2 . (So $g \approx 9.8$.) Which of the following expressions give the work, in joules, required to raise the object?

i.
$$\boxed{3\int_0^{10}g\cdot m(t)\,dt}$$
 ii.
$$\boxed{\int_0^{30}g\cdot m\left(\frac{x}{3}\right)\,dx}$$
 iii.
$$\boxed{\int_0^{30}g\cdot m\left(\frac{x}{3}\right)\,dx}$$
 v. None of these