4. [12 points] For each of the questions below, circle all of the available correct answers. Circle "none of these" if none of the available choices are correct.
a. [3 points] Which of the following are antiderivatives of the function $2 \sin (x) \cos (x)$?
i. $\frac{1}{2} \cos ^{2}(x)+\frac{1}{2} \sin ^{2}(x)$
ii. $\sin ^{2}(3)-\cos ^{2}(x)$
iii. $\int_{0}^{\pi} 2 \sin (x) \cos (x) d x$
iv. $\sin ^{2}(x)$
v. NONE OF THESE
b. [3 points] Which of the following integrals give the arc length of the curve $y=e^{2 x}$ from $x=0$ to $x=2$?
i. $\int_{0}^{2} \sqrt{1+4 e^{2 x}} d x$
ii. $\int_{0}^{2} \sqrt{1+e^{4 x}} d x$
iii. $\frac{1}{2} \int_{0}^{1} \sqrt{1+4 e^{2 s}} d s$
iv. $\int_{0}^{2} \sqrt{1+4 e^{4 u}} d u$
v. NONE OF THESE
c. [3 points] Which of the following are antiderivatives of the function $\frac{1}{\ln x}$?
i. $\ln (\ln (x))+4$
ii. $\int_{2}^{e} \frac{1}{\ln t} d t$
iii. $\int_{1}^{\ln x} \frac{e^{t}}{t} d t$
iv. $\int_{2}^{x} \frac{1}{\ln t} d t$
v. NONE OF THESE
d. [3 points] An object with variable mass is lifted up 30 meters at a constant rate. This process takes 10 seconds. Suppose that $m(t)$ is the mass of the object, in kilograms, t seconds after the lifting begins. Let g be the acceleration due to gravity in $\mathrm{m} / \mathrm{s}^{2}$. (So $g \approx 9.8$.) Which of the following expressions give the work, in joules, required to raise the object?
i. $3 \int_{0}^{10} g \cdot m(t) d t$
ii. $\int_{0}^{30} g \cdot m\left(\frac{x}{3}\right) d x$
iii. $\frac{1}{3} \int_{0}^{30} g \cdot m(x) d x$
iv. $\int_{0}^{10} g \cdot 3 t \cdot m(t) d t$
v. NONE OF THESE
