6. [10 points] The Rodin Coil is a fantastic device that (supposedly) creates unlimited free energy. The rate at which it creates this energy is a function of the volume of the coil.
a. [5 points] Suppose a prototype of the Rodin Coil is the solid whose base is the circle $x^{2}+y^{2}=2$ (where x and y are measured in meters), and whose cross sections perpendicular to the x-axis are squares. Write, but do not compute, an expression involving one or more integrals which gives the volume, in cubic meters, of this prototype.
Solution: We find that the sidelength of the square at x-coordinate x is $2 \cdot \sqrt{2-x^{2}}$. So the volume of a slice of thickness Δx at that point is approximately $\left(2 \cdot \sqrt{2-x^{2}}\right)^{2} \cdot \Delta x$. Integrating from the left end of the circle to the right end we find a total volume (in cubic meters) of

$$
\int_{-\sqrt{2}}^{\sqrt{2}}\left(2 \sqrt{2-x^{2}}\right)^{2} d x
$$

b. [5 points] One of Rodin's students was able to come up with an even more efficient free energy machine. Suppose the student's prototype was made by taking the same circle $x^{2}+y^{2}=2$ and rotating it around the vertical line $x=3$. Write, but do not compute, an expression involving one or more integrals which gives the volume, in cubic meters, of this prototype.
Solution:
One Solution: Using cylindrical shells perpendicular to the x-axis, we find that the volume is equal to

$$
\int_{-\sqrt{2}}^{\sqrt{2}} 2 \pi(3-x)\left(2 \sqrt{2-x^{2}}\right) d x
$$

Another Solution: Using slices of the solid perpendicular to the y-axis ("washers"), we find that the volume is equal to

$$
\int_{-\sqrt{2}}^{\sqrt{2}} \pi\left[\left(3+\sqrt{2-y^{2}}\right)^{2}-\left(3-\sqrt{2-y^{2}}\right)^{2}\right] d y
$$

