7. [10 points] Consider the function F defined for all x by the formula

$$
F(x)=\int_{7}^{x^{2}} e^{-t^{2}} d t
$$

a. [1 point] Find a number $a \geq 0$ so that $F(a)=0$.

Solution: $\quad a=\sqrt{7}$.
b. [4 points]
(i) Calculate $F^{\prime}(x)$. Your answer should not contain any integrals.

Solution: Applying the Second Fundamental Theorem of Calculus and the Chain Rule, we find

$$
F^{\prime}(x)=e^{-\left(x^{2}\right)^{2}} \cdot 2 x=2 x e^{-x^{4}}
$$

(ii) Is $F(x)$ increasing on the entire interval $[1,8]$? Why or why not?

Solution: $F^{\prime}(x)>0$ if $x>1$ (in fact, if $x>0$). Thus $F(x)$ is increasing on this interval. Alternatively, $F(x)$ is the integral of a positive function, and the interval expands as x increases.
c. [3 points] Write out each term of a MID(3) estimate of $F(5)$.
(You do not need to find or approximate the numerical value of your answer.)

$$
\begin{array}{ll}
\text { Solution: } & F(5)=\int_{7}^{25} e^{-x^{2}} d x, \text { and therefore } \\
& M I D(3)=6 \cdot\left(e^{-10^{2}}+e^{-16^{2}}+e^{-22^{2}}\right)=6\left(e^{-100}+e^{-256}+e^{-484}\right)
\end{array}
$$

d. [2 points] Is your answer to part (c) an overestimate or underestimate of $F(5)$? Briefly explain your reasoning.

Solution: Since $e^{-x^{2}}$ is concave up on the interval [7, 25], $\operatorname{MID}(3)$ is an underestimate of $F(5)$.

