8. [14 points] Let g(x) be a differentiable function with domain (-1, 10) where some values of g(x) and g'(x) are given in the table below. Assume that all local extrema and critical points of g(x) occur at points given in the table.

x	0	1	2	3	4	5	6	7	8
g(x)	2.0	3.3	5.7	6.8	6.0	4.3	2.4	0.2	-4.9
g'(x)	2.8	2.5	2.0	0.0	-1.4	-1.9	-1.6	-3.0	-8.1

- **a**. [3 points] Estimate $\int_0^8 g(x) dx$ using RIGHT(4). Write out each term in your sum.
- **b.** [4 points] Approximate the area of the region between g(x) and the function f(x) = x + 2 for $0 \le x \le 4$, using MID(n) to estimate any integrals you use. Use the greatest number of subintervals possible, and write out each term in your sums.

c. [3 points] Is your answer to **b**. an overestimate, an underestimate, or is there not enough information to tell? Briefly justify your answer.

Answer:	(circle one)		
	OVERESTIMATE	UNDERESTIMATE	NOT ENOUGH INFORMATION

d. [4 points] Write an integral giving the arc length of y = g(x) between x = 2 and x = 8. Estimate this integral using TRAP(2). Write out each term in your sum.

Answer: Integral:

Answer: TRAP(2) = _____