8. [14 points] Let $g(x)$ be a differentiable function with domain $(-1,10)$ where some values of $g(x)$ and $g^{\prime}(x)$ are given in the table below. Assume that all local extrema and critical points of $g(x)$ occur at points given in the table.

x	0	1	2	3	4	5	6	7	8
$g(x)$	2.0	3.3	5.7	6.8	6.0	4.3	2.4	0.2	-4.9
$g^{\prime}(x)$	2.8	2.5	2.0	0.0	-1.4	-1.9	-1.6	-3.0	-8.1

a. [3 points] Estimate $\int_{0}^{8} g(x) d x$ using RIGHT(4). Write out each term in your sum.
b. [4 points] Approximate the area of the region between $g(x)$ and the function $f(x)=x+2$ for $0 \leq x \leq 4$, using $\operatorname{MID}(n)$ to estimate any integrals you use. Use the greatest number of subintervals possible, and write out each term in your sums.
c. [3 points] Is your answer to \mathbf{b}. an overestimate, an underestimate, or is there not enough information to tell? Briefly justify your answer.
Answer: (circle one)
NOT ENOUGH INFORMATION
d. [4 points] Write an integral giving the arc length of $y=g(x)$ between $x=2$ and $x=8$. Estimate this integral using TRAP(2). Write out each term in your sum.

Answer: Integral: \qquad

Answer: $\operatorname{TRAP}(2)=$ \qquad

