2. [9 points]

When Alejandra and Brontel were children they spent summer mornings chasing birds in flight. One memorable day they encountered an owl. The following graph shows the velocities $a(t)$ of Alejandra (solid) and $b(t)$ of Brontel (dashed), measured in meters per second, t seconds after the owl took off. The area of each region is given.
a. [1 point] How far (in meters) do Alejandra and Brontel chase the owl?

Solution: Summing the areas under either curve gives a total dis-
 tance of 10 m .
b. [5 points] Suppose the owl ascends to a height of h meters according to $h(t)=\sqrt{t}$ where t is seconds since it went airborne. Let $L(h)$ be the number of meters Alejandra is ahead of Brontel when the owl is h meters above ground. Write an expression for $L(h)$ involving integrals and compute $L^{\prime}(2)$.

Solution: The owl is h meters above the ground at time $t=h^{2}$. Thus,

$$
L(h)=\int_{0}^{h^{2}} a(t)-b(t) d t
$$

We compute $L^{\prime}(h)$ using the second fundamental theorem of calculus.

$$
L^{\prime}(h)=2 h a\left(h^{2}\right)-2 h b\left(h^{2}\right) .
$$

So we have

$$
L^{\prime}(2)=2 \cdot 2 a(4)-2 \cdot 2 b(4)=4 \cdot 3-4 \cdot 1=8,
$$

where we get the values of $a(2)$ and $b(2)$ from the graph.
c. [3 points] The next bird to pass is a dove. This time Alejandra runs twice as fast and Brontel runs three times as fast as they did when chasing the owl. How much faster (in m / s) is Brontel than Alejandra on average in the first 5 seconds?
Solution: The integral that represents this average is

$$
\frac{1}{5} \int_{0}^{5} 3 b(t)-2 a(t) d t=\frac{3}{5} \int_{0}^{5} b(t) d t-\frac{2}{5} \int_{0}^{5} a(t) d t
$$

Each of these integrals is equal to 10 as we see from the graph. Hence

$$
\frac{1}{5} \int_{0}^{5} 3 b(t)-2 a(t) d t=\frac{10}{5}=2 .
$$

Answer:

