3. [10 points]

Debra McQueath hooked you up with an interview at Print.juice. Being a legitimate tech start-up, the Print. juice interview consists of answering technical questions on the spot. Debra gave you the following questions for practice.

The region J is a common Print.juice shape. It is bounded by $x=1, y=1$, and $y=e^{x}$.

a. [3 points] First, consider the solid with base J and square cross sections perpendicular to the x-axis. If the density of the solid is a function of the x-coordinate $a(x) \mathrm{g} / \mathrm{cm}^{3}$, write an integral that represents the total mass of the solid in grams.
Solution: The height of a cross-section is $e^{x}-1$, thus the total mass is

$$
\int_{0}^{1} a(x)\left(e^{x}-1\right)^{2} d x .
$$

For b. and c., consider the solid made by rotating J around the line $x=2$.
b. [3 points] If the density of the solid is a function of the y-coordinate $b(y) \mathrm{g} / \mathrm{cm}^{3}$, write an integral that represents the total mass of the solid in grams.
Solution: Using the washer method we compute the total mass to be

$$
\int_{1}^{e} b(y) \pi\left((2-\ln (y))^{2}-1^{2}\right) d y .
$$

c. [4 points] If the density of the solid is a function of the distance $r \mathrm{~cm}$ from the axis of rotation $c(r) \mathrm{g} / \mathrm{cm}^{3}$, write an integral that represents the total mass of the solid in grams.

Solution: Using the shell method we can either compute the mass in terms of x or r. In terms of r we get

$$
\int_{1}^{2} c(r) 2 \pi r\left(e^{2-r}-1\right) d r
$$

and in terms of x we get

$$
\int_{0}^{1} c(2-x) 2 \pi(2-x)\left(e^{x}-1\right) d x
$$

