5. [9 points] Tammy Toppel is directing a performance art piece at the community center. She fills a large cone with sand and cuts a small hole in the bottom. Gerd Hömf was hired from a temp agency to stand behind the scenes and steadily lift the cone with an elaborate pulley system, letting the sand slowly spill onto the stage.
a. [2 points] The filled cone starts with a total mass of 40 kilograms and spills sand at a constant rate of $1 / 2$ a kilogram per second once it is lifted. Tammy wants Gerd to lift the cone at a constant rate of r meters per second. Find a formula for the mass $M(h)$, in kilograms, of the cone when it is h meters above the stage.

Solution: The relation between the height h of the cone and time t is $h=r t$, where r is the rate at which Gerd lifts. So $t=h / r$. The mass as a function of time is given by $40-\frac{1}{2} t$, hence

$$
M(h)=40-\frac{h}{2 r}
$$

b. [4 points] Gerd lifts the cone until it reaches a height of 20 meters above the stage. Write an integral which represents the work (measured in Joules) done by Gerd while lifting the cone. The integral may include the rate r at which Gerd lifts and g the acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) due to gravity.

Solution: The work done by Gerd lifting the cone to a height of h is given by

$$
\int_{0}^{20} g M(h) d h=\int_{0}^{20} g\left(40-\frac{h}{2 r}\right) d h
$$

c. [3 points] There's one catch: Gerd's contract strictly prohibits him from exerting more than $500 g$ Joules of work, where g is the acceleration due to gravity. At what rate r (in m / s) should Tammy ask Gerd to lift in order to not violate his contract and to get the cone lifted as quickly as possible?
Solution: We set the integral from the previous part equal to 500 g and solve for r.

$$
\begin{aligned}
500 g & =\int_{0}^{20} g\left(40-\frac{h}{2 r}\right) d h \\
& =\left.\left(40 g h-\frac{h^{2}}{4 r}\right)\right|_{0} ^{20} \\
& =800 g-\frac{400}{4 r}-0 \\
& =g\left(800-\frac{100}{r}\right) .
\end{aligned}
$$

Dividing both sides by g and multiplying by r we have

$$
500 r=800 r-100 \Longrightarrow r=\frac{1}{3}
$$

Answer: $r=1 / 3$

