8. [14 points] Let $g(x)$ be a differentiable function with domain $(-1,10)$ where some values of $g(x)$ and $g^{\prime}(x)$ are given in the table below. Assume that all local extrema and critical points of $g(x)$ occur at points given in the table.

x	0	1	2	3	4	5	6	7	8
$g(x)$	2.0	3.3	5.7	6.8	6.0	4.3	2.4	0.2	-4.9
$g^{\prime}(x)$	2.8	2.5	2.0	0.0	-1.4	-1.9	-1.6	-3.0	-8.1

a. [3 points] Estimate $\int_{0}^{8} g(x) d x$ using RIGHT(4). Write out each term in your sum.

Solution: With 4 rectangles the width of each is $\Delta x=\frac{8-0}{4}=2$. Then

$$
\begin{aligned}
\operatorname{RIGHT}(4) & =g(2) \Delta x+g(4) \Delta x+g(6) \Delta x+g(8) \Delta x \\
& =(5.7+6.0+2.4-4.9) \cdot 2 \\
& =18.4
\end{aligned}
$$

Answer:

18.4

b. [4 points] Approximate the area of the region between $g(x)$ and the function $f(x)=x+2$ for $0 \leq x \leq 4$, using $\operatorname{MID}(n)$ to estimate any integrals you use. Use the greatest number of subintervals possible, and write out each term in your sums.
Solution: The function $g(x)$ is concave down on $[0,4]$, so $g(x)$ is greater than or equal to the linear function $f(x)$ on this interval. The integral to compute this area is

$$
\int_{0}^{4} g(x)-f(x) d x=\int_{0}^{4} g(x) d x-\int_{0}^{4} x+2 d x .
$$

Since $f(x)$ is linear, we get the same answer whether we use MID to approximate $\int_{0}^{4} g(x)-$ $f(x) d x$ or just $\int_{0}^{4} g(x) d x$ and compute $\int_{0}^{4} f(x) d x$ exactly. In either case, we can use at most 2 subintervals and $\Delta x=2$.
If we compute $\operatorname{MID}(2)$ for $\int_{0}^{4} g(x)-f(x) d x$, we get

$$
\begin{aligned}
\operatorname{MID}(2) & =(g(1)-f(1)) \Delta x+(g(3)-f(3)) \Delta x \\
& =((3.3-3)+(6.8-5)) 2 \\
& =(.3+1.8) 2 \\
& =4.2
\end{aligned}
$$

If we compute $\int_{0}^{4} f(x) d x=16$ and then compute $\operatorname{MID}(2)$ for $\int_{0}^{4} g(x) d x$ we get

$$
\begin{aligned}
\operatorname{MID}(2) & =g(1) \Delta x+g(3) \Delta x \\
& =(3.3+6.8) 2 \\
& =20.2 .
\end{aligned}
$$

Then we get $20.2-16=4.2$ for the total area.
Answer:
c. [3 points] Is your answer to \mathbf{b}. an overestimate, an underestimate, or is there not enough information to tell? Briefly justify your answer.

Solution: Since we are only given a table and not told that the concavity does not change between points, we technically do not have enough information to answer this question.
Had it been the case that $g^{\prime}(x)$ has no critical points aside from those in the table, it would follow that $g(x)$ is concave down, because $g^{\prime}(x)$ would be decreasing on the given interval. Since $f(x)$ is linear, the concavity of $g(x)-f(x)$ would also be concave down. In that case, $\operatorname{MID}(2)$ would be an overestimate.
Credit was awarded for both of these answers.
d. [4 points] Write an integral giving the arc length of $y=g(x)$ between $x=2$ and $x=8$. Estimate this integral using $\operatorname{TRAP}(2)$. Write out each term in your sum.

Answer: Integral: \qquad
Solution: The arc length is given by the integral

$$
\text { Arc length }=\int_{2}^{8} \sqrt{1+g^{\prime}(x)^{2}} d x
$$

The width of our trapezoids is $\Delta x=\frac{8-2}{2}=3$.
If we compute the areas of the trapezoids directly we get

$$
\begin{aligned}
\operatorname{TRAP}(2) & =\left(\frac{\sqrt{1+g^{\prime}(2)^{2}}+\sqrt{1+g^{\prime}(5)^{2}}}{2}\right) \Delta x+\left(\frac{\sqrt{1+g^{\prime}(5)^{2}}+\sqrt{1+g^{\prime}(8)^{2}}}{2}\right) \Delta x \\
& \approx(2.1915795+5.1542930) 3 \\
& \approx 22.0376175 .
\end{aligned}
$$

If we compute LEFT(2) and RIGHT(2) first and then take an average we get

$$
\begin{aligned}
\operatorname{LEFT}(2) & =\sqrt{1+g^{\prime}(2)^{2}} \Delta x+\sqrt{1+g^{\prime}(5)^{2}} \Delta x \\
& \approx(4.3831590) 3 \\
& \approx 13.1494770 . \\
\operatorname{RIGHT}(2) & =\sqrt{1+g^{\prime}(5)^{2}} \Delta x+\sqrt{1+g^{\prime}(8)^{2}} \Delta x \\
& \approx(10.3085860) 3 \\
& \approx 30.9257580 .
\end{aligned}
$$

Then

$$
\operatorname{TRAP}(2)=\frac{1}{2}(\operatorname{LEFT}(2)+\operatorname{RIGHT}(2)) \approx 22.0376175
$$

Answer: $\operatorname{TRAP}(2)=$

