2. [16 points] Part of the graph of $g(x)$, a piecewise-linear odd function defined on $[-8,8]$, is given below.

a. [6 points] Let $A(x)=\int_{4}^{2 x} g(t) d t$. Find the following values. If the value does not exist, write "DNE". You do not need to show work, but partial credit may be awarded for correct work.
(i) $A(4)=$ \qquad
(ii) $A(1)=$ \qquad
(iii) $A^{\prime}(2.5)=$ \qquad
b. [10 points] Let $G(x)=\int_{2}^{x} g(t) d t$ for $-4 \leq x \leq 4$. Carefully sketch the graph of $G(x)$ below. Make sure your sketch clearly displays:

- the values of $G(x)$ at integer values of x;
- where $G(x)$ is and is not differentiable;
- where $G(x)$ is increasing or decreasing;
- the concavity of $G(x)$.

