2. [16 points] Part of the graph of g(x), a piecewise-linear <u>odd</u> function defined on [-8, 8], is given below. y

a. [6 points] Let $A(x) = \int_{4}^{2x} g(t) dt$. Find the following values. If the value does not exist, write "DNE". You do not need to show work, but partial credit may be awarded for correct work.

(i)
$$A(4) =$$
 (ii) $A(1) =$ (iii) $A'(2.5) =$

b. [10 points] Let $G(x) = \int_2^x g(t) dt$ for $-4 \le x \le 4$. Carefully sketch the graph of G(x) below. Make sure your sketch clearly displays:

- the values of G(x) at integer values of x;
- where G(x) is increasing or decreasing;
- where G(x) is and is not differentiable;
- the concavity of G(x).

