3. [11 points] The parts of this problem are not related.
a. [6 points] Suppose $f(x)$ is a positive function, defined for all real numbers x, with continuous first derivative. For each part below, circle "True" if the statement is always true and circle "False" otherwise. No justification is necessary.
b. [2 points] Suppose $G(x)$ and $H(x)$ are continuous antiderivatives of an even function $g(x)$ and $G(1)>H(1)$. Which of the following must be true?
i. $G(-1)$ is definitely greater than $H(-1)$.
ii. $G(-1)$ is definitely not greater than $H(-1)$.
iii. None of these.
c. [3 points] A region bounded entirely by the graph of the function $y=\arctan (x)$, the y-axis, and the line $y=\frac{\pi}{4}$ is rotated around the x-axis. Which of the following integrals represents the volume of the resulting solid? Choose the one best answer.

$$
\begin{aligned}
& \text { i. } \pi \int_{0}^{1}\left(\frac{\pi}{4}-\arctan (x)\right)^{2} d x \\
& \text { ii. } \pi \int_{0}^{1}\left(\frac{\pi}{4}\right)^{2}-(\arctan (x))^{2} d x \\
& \text { iii. } \pi \int_{0}^{\pi / 4} 1-(\arctan (x))^{2} d x \\
& \text { iv. } \pi \int_{0}^{\pi / 4}(\tan (y))^{2}-1 d y
\end{aligned}
$$

$$
\text { v. } \pi \int_{0}^{\pi / 4}(\tan (y)-1)^{2} d y
$$

$$
\text { vi. } \pi \int_{0}^{1}\left(\tan (y)-\frac{\pi}{4}\right)^{2} d y
$$

$$
\text { vii. } \pi \int_{0}^{1}(\tan (y))^{2}-\left(\frac{\pi}{4}\right)^{2} d y
$$

viii. NONE OF THESE

$$
\begin{aligned}
& \int_{0}^{3} x f\left(x^{2}\right) d x=\frac{1}{2} \int_{0}^{3} f(u) d u \\
& \int_{0}^{3} x f\left(x^{2}\right) d x=\int_{0}^{3} s f\left(s^{2}\right) d s \\
& \int x f\left(x^{2}\right) d x=x \cdot \int f\left(x^{2}\right) d x \\
& \int x f\left(x^{2}\right) d x=x \cdot \int f\left(x^{2}\right) d x+f\left(x^{2}\right) \cdot \int x d x \\
& \int x f\left(x^{2}\right) d x=\int x d x \cdot \int f\left(x^{2}\right) d x \\
& \int x f\left(x^{2}\right) d x=\frac{x^{2}}{2} f^{\prime}\left(x^{2}\right)-\int x^{3} f^{\prime}\left(x^{2}\right) d x \\
& \text { TRUE } \\
& \text { FALSE } \\
& \text { True } \\
& \text { FALSE } \\
& \text { True } \\
& \text { FALSE } \\
& \text { True } \\
& \text { FALSE } \\
& \text { True } \\
& \text { FALSE } \\
& \text { True } \\
& \text { FALSE }
\end{aligned}
$$

