5. [9 points] Before calculators existed, it was a difficult task for scientists and engineers to compute values of special functions like logarithm. In this problem, we will use simple arithmetic operations to approximate the value of $\ln 2$. Note that for x > 0,

$$\ln x = \int_1^x \frac{1}{t} \, dt.$$

a. [3 points] Approximate the integral $\int_{1}^{2} \frac{1}{t} dt$ using LEFT(4). Write out each term in your sum.

Answer:

b. [3 points] Which of the following are equal to the LEFT(n) approximations for $\int_1^2 \frac{1}{t} dt$? Circle the <u>one</u> best answer.

i.
$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{i}$$
iv. $\frac{1}{n} \sum_{i=1}^{n} \frac{1}{i}$ ii. $\frac{1}{n} \sum_{i=0}^{n} \frac{1}{1+i/n}$ v. $\frac{1}{n} \sum_{i=n}^{n} \frac{1}{1+i/n}$ iii. $\frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{1+i/n}$ vi. $\frac{1}{n} \sum_{i=0}^{n} \frac{1}{1+1/n}$

c. [3 points] How many subintervals would be needed so that a scientist who lived before calculators were invented would be certain that the resulting left-hand Riemann sum approximates $\ln(2)$ to within 0.01? Justify your answer.