8. [12 points] Consider the region \mathcal{R} bounded by the curve $x^2 + 3y = 4$ and the x-axis.

a. [4 points] Write an expression involving one or more integrals that gives the perimeter, in cm, of \mathcal{R} . You do not need to evaluate the integral.

Answer:

b. [4 points] Write an expression involving one or more integrals that gives the volume, in cm^3 , of the solid formed by rotating \mathcal{R} about the line x = -4.

Answer:

c. [4 points] Write, but do not evaluate, an expression involving one or more integrals that gives the mass, in grams, of a thin plate in the shape of the region R that has mass density given by $\delta(x) = x + 2$ g/cm².