8. [12 points] Consider the region \mathcal{R} bounded by the curve $x^{2}+3 y=4$ and the x-axis.

a. [4 points] Write an expression involving one or more integrals that gives the perimeter, in cm , of \mathcal{R}. You do not need to evaluate the integral.

Abstract

Answer: b. [4 points] Write an expression involving one or more integrals that gives the volume, in cm^{3}, of the solid formed by rotating \mathcal{R} about the line $x=-4$.

Abstract

Answer: c. [4 points] Write, but do not evaluate, an expression involving one or more integrals that gives the mass, in grams, of a thin plate in the shape of the region R that has mass density given by $\delta(x)=x+2 \mathrm{~g} / \mathrm{cm}^{2}$.

Answer:

