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5. [9 points] Before calculators existed, it was a difficult task for scientists and engineers to com-
pute values of special functions like logarithm. In this problem, we will use simple arithmetic
operations to approximate the value of ln 2.
Note that for x > 0,

lnx =

∫

x

1

1

t
dt.

a. [3 points] Approximate the integral

∫

2

1

1

t
dt using LEFT(4). Write out each term in your

sum.

Solution:
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Answer:
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7

b. [3 points] Which of the following are equal to the LEFT(n) approximations for

∫

2

1

1

t
dt?

Circle the one best answer.
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n
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1
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c. [3 points] How many subintervals would be needed so that a scientist who lived before
calculators were invented would be certain that the resulting left-hand Riemann sum
approximates ln(2) to within 0.01? Justify your answer.

Solution:

|LEFT(n)− RIGHT(n)| ≤
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Since 1/2n ≤ 0.01 if and only if n ≥ 50, at least 50 subintervals would be needed.

Answer: (at least) 50
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