5. [9 points] Before calculators existed, it was a difficult task for scientists and engineers to compute values of special functions like logarithm. In this problem, we will use simple arithmetic operations to approximate the value of $\ln 2$.
Note that for $x>0$,

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

a. [3 points] Approximate the integral $\int_{1}^{2} \frac{1}{t} d t$ using LEFT(4). Write out each term in your sum.
Solution:

$$
\begin{aligned}
\operatorname{LEFT}(4) & =\frac{2-1}{4}\left(\frac{1}{1}+\frac{1}{1+1 / 4}+\frac{1}{1+2 / 4}+\frac{1}{1+3 / 4}\right) \\
& =\frac{1}{4}\left(1+\frac{4}{5}+\frac{4}{6}+\frac{4}{7}\right) \\
& =\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7} .
\end{aligned}
$$

Answer:

$$
\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}
$$

b. [3 points] Which of the following are equal to the $\operatorname{LEFT}(n)$ approximations for $\int_{1}^{2} \frac{1}{t} d t$? Circle the one best answer.
i. $\frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{i}$
iv. $\frac{1}{n} \sum_{i=1}^{n} \frac{1}{i}$
ii. $\frac{1}{n} \sum_{i=0}^{n} \frac{1}{1+i / n}$
v. $\frac{1}{n} \sum_{i=n}^{n} \frac{1}{1+i / n}$
iii. $\frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{1+i / n}$
vi. $\frac{1}{n} \sum_{i=0}^{n} \frac{1}{1+1 / n}$
c. [3 points] How many subintervals would be needed so that a scientist who lived before calculators were invented would be certain that the resulting left-hand Riemann sum approximates $\ln (2)$ to within 0.01 ? Justify your answer.

Solution:

$$
|\operatorname{LEFT}(n)-\operatorname{RIGHT}(n)| \leq\left|\frac{1}{1}-\frac{1}{2}\right| \cdot \frac{2-1}{n}=\frac{1}{2} \cdot \frac{1}{n}=\frac{1}{2 n}
$$

Since $1 / 2 n \leq 0.01$ if and only if $n \geq 50$, at least 50 subintervals would be needed.

