6. [12 points] Ryan Rabbitt is making a smoothie with his new electric drink mixer. Mathematically, the container of the mixer has a shape that can be modeled as the surface obtained by rotating the region in the first quadrant bounded by the curves \(y = 27 \) and \(y = x^{3/2} \) about the \(y \)-axis, where all lengths are measured in centimeters.

a. [7 points] Write, but do not evaluate, two integrals representing the total volume, in cm\(^3\), the mixer can hold: one with respect to \(x \), and one with respect to \(y \).

Answer (with respect to \(x \)): \(\int_{0}^{9} 2\pi x \left(27 - x^{3/2} \right) \, dx \)

Answer (with respect to \(y \)): \(\int_{0}^{27} \pi \left(y^{2/3} \right)^2 \, dy \)

b. [5 points] Ryan adds 1600 cubic centimeters of liquid to his mixer. The container spins around the \(y \)-axis at a very high speed, causing the liquid to move away from the center of the container. The result is the solid made by rotating the shaded region around the \(y \)-axis in the diagram below. Note that this means that there is an empty space inside the liquid that has the shape of a cylinder.

Let \(r \) be the radius of this cylinder of empty space. Set up an equation involving one or more integrals that you would use to solve to find the value of \(r \). **Do not solve for** \(r \).

Solution:

\[
\int_{r}^{9} 2\pi x \left(27 - x^{3/2} \right) \, dx = 1600,
\]

or

\[
\int_{r^{3/2}}^{27} \pi \left(y^{2/3} \right)^2 \, dy - \pi r^2 (27 - r^{3/2}) = 1600.
\]

(There are other equations that would also work.)

Answer: