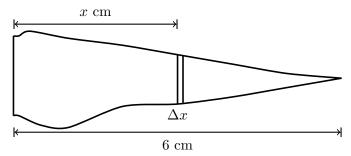
7. [12 points] Hannah Haire has a carrot that is 6 cm long. Lying on its side, it looks like the diagram below, and cross-sections perpendicular to the x-axis are circles. The density of the carrot also varies with x.



Given a distance x cm from the large end of the carrot, let f(x) model the diameter, in cm, of the circular cross-section and $\delta(x)$ the density of the carrot, in g/cm^3 .

a. [4 points] Write an expression that gives the approximate mass, in grams, of a slice of the carrot that is Δx cm thick and x cm from the large end of the carrot. (Assume here that Δx is small but positive.) Your expression should not involve any integrals, but may include f(x) and $\delta(x)$.

Answer: $\frac{\pi \left(\frac{f(x)}{2}\right)^2 \delta(x) \Delta x}{2}$

b. [3 points] Write an expression involving one or more integrals that gives the total mass of the carrot. Your answer may include f(x) and $\delta(x)$.

Answer: $\pi \int_0^6 \left(\frac{f(x)}{2}\right)^2 \delta(x) dx$

c. [5 points] Below is a table with some values of f(x) and $\delta(x)$. Use MID(3) to estimate the mass, in grams, of the carrot. Write out every term in your sum.

x	0	1	2	3	4	5	6
f(x)	3.4	3.8	2.6	2.1	1.4	0.6	0
$\delta(x)$	1.54	1.52	1.48	1.44	1.42	1.39	1.32

 $2\pi\left(\left(\frac{3.8}{2}\right)^2 \cdot 1.52 + \left(\frac{2.1}{2}\right)^2 1.44 + \left(\frac{0.6}{2}\right)^2 1.39\right) \approx 45.3$

University of Michigan Department of Mathematics